Purpose: This study reports clinical experience using a linear accelerator-based MV-kV imaging system for intrafraction motion management during prostate stereotactic body radiation therapy (SBRT).
Methods And Materials: From June 2016 to August 2018, 193 prostate SBRT patients were treated using MV-kV motion management (median dose 40 Gy in 5 fractions). Patients had 3 fiducials implanted then simulated and treated with a full bladder and empty rectum.
Purpose: Robust detection of implanted fiducials is essential for monitoring intrafractional motion during hypofractionated treatment. The authors developed a plan optimization strategy to ensure clear visibility of implanted fiducials and facilitate 3D localization during volumetric modulated arc therapy (VMAT).
Methods: Periodic kilovoltage (kV) images were acquired at 20° gantry intervals and paired with simultaneously acquired 4.
Purpose: Quantitative estimation of the radionuclide activity concentration in positron emission tomography (PET) requires precise modeling of PET physics. The authors are focused on designing unconventional PET geometries for specific applications. This work reports the creation of a generalized reconstruction framework, capable of reconstructing tomographic PET data for systems that use right cuboidal detector elements positioned at arbitrary geometry using a regular Cartesian grid of image voxels.
View Article and Find Full Text PDFNucl Instrum Methods Phys Res A
September 2015
Compact high-resolution panel detectors using virtual pinhole (VP) PET geometry can be inserted into existing clinical or pre-clinical PET systems to improve regional spatial resolution and sensitivity. Here we describe a compact panel PET detector built using the new Though Silicon Via (TSV) multi-pixel photon counters (MPPC) detector. This insert provides high spatial resolution and good timing performance for multiple bio-medical applications.
View Article and Find Full Text PDFWe developed a non-magnetic positron-emission tomography (PET) device based on the rat conscious animal PET that operates in a small-animal magnetic resonance imaging (MRI) scanner, thereby enabling us to carry out simultaneous PET/MRI studies. The PET detector comprises 12 detector blocks, each being a 4 × 8 array of lutetium oxyorthosilicate crystals (2.22 × 2.
View Article and Find Full Text PDFPositron emission tomography (PET) neuroimaging and behavioral assays in rodents are widely used in neuroscience. PET gives insights into the molecular processes of neuronal communication, and behavioral methods analyze the actions that are associated with such processes. These methods have not been directly integrated, because PET studies in animals have until now required general anesthesia to immobilize the subject, which precludes behavioral studies.
View Article and Find Full Text PDFObjectives: We tested whether dynamic interaction between limbic regions supports a control systems model of excitatory and inhibitory components of a negative feedback loop, and whether dysregulation of those dynamics might correlate with trait differences in anxiety and their cardiac characteristics among healthy adults.
Experimental Design: Sixty-five subjects received fMRI scans while passively viewing angry, fearful, happy, and neutral facial stimuli. Subjects also completed a trait anxiety inventory, and were monitored using ambulatory wake ECG.