Rare earth elements (REEs) and Nd isotopes are frequently employed to determine provenance, although their characteristics and provenances in the surface sediments of mangrove wetlands are rarely analyzed. In this study, a thorough analysis of the characteristics and provenances of REEs and Nd isotopes in the surface sediments of mangrove wetland in the Jiulong River Estuary was carried out. According to the results, the mean concentration of REEs in the surface sediments was 290.
View Article and Find Full Text PDFPolyphenolic compounds are abundant in mangrove plants, playing a pivotal role in the detoxification of pollutants extruded from surrounding environments into plant tissues. The present study aimed to examine the variations of phenolic compounds, namely total polyphenolics, soluble tannins, condensed tannins and lignin, in the mangrove plant Aegiceras corniculatum (L.) due to the presence of exogenous cadmium and phenanthrene and to explore the influence of phenolic metabolism on biological translocation of these pollutants from roots to leaves.
View Article and Find Full Text PDFAppl Microbiol Biotechnol
July 2015
Ammonia-oxidizing archaea (AOA) and bacteria (AOB) play important roles in nitrogen cycling. However, the effects of environmental factors on the activity, abundance, and diversity of AOA and AOB and the relative contributions of these two groups to nitrification in paddy soils are not well explained. In this study, potential nitrification activity (PNA), abundance, and diversity of amoA genes from 12 paddy soils in Southern China were determined by potential nitrification assay, quantitative PCR, and cloning.
View Article and Find Full Text PDFAnaerobic oxidation of ammonium (anammox) is recognized as an important process for nitrogen (N) cycling, yet its role in agricultural ecosystems, which are intensively fertilized, remains unclear. In this study, we investigated the presence, activity, functional gene abundance and role of anammox bacteria in rhizosphere and non-rhizosphere paddy soils using catalyzed reporter deposition-fluorescence in situ hybridization, isotope-tracing technique, quantitative PCR assay and 16S rRNA gene clone libraries. Results showed that rhizosphere anammox contributed to 31-41% N2 production with activities of 0.
View Article and Find Full Text PDFAppl Environ Microbiol
February 2015
The anaerobic oxidation of ammonium (anammox) process has been observed in diverse terrestrial ecosystems, while the contribution of anammox to N2 production in paddy soils is not well documented. In this study, the anammox activity and the abundance and diversity of anammox bacteria were investigated to assess the anammox potential of 12 typical paddy soils collected in southern China. Anammox bacteria related to "Candidatus Brocadia" and "Candidatus Kuenenia" and two novel unidentified clusters were detected, with "Candidatus Brocadia" comprising 50% of the anammox population.
View Article and Find Full Text PDFBull Environ Contam Toxicol
November 2014
A pot experiment was conducted to investigate the Cadmium (Cd) toxicity alleviated by the rhizosphere of Kandelia obovata (S., L.) Yong (K.
View Article and Find Full Text PDFThe present study investigated nitrogen process in rhizosphere of Kandelia obovata under nitrogen input. Results showed that nitrogen additions significantly increased 4 kinds of enzyme activities (Urease, Nitrate reductase, Nitrite reductase and hydroxylamine reductase). The pH value increased to 7.
View Article and Find Full Text PDFIn order to explore the detoxification mechanisms adopted by mangrove under cadmium (Cd) stress, we investigated the subcellular distribution and chemical forms of Cd, in addition to the change of the thiol pools in Kandelia obovata (S., L.) Yong, which were cultivated in sandy culture medium treated with sequential Cd solution.
View Article and Find Full Text PDFThe aim of this study was to evaluate short-term concentration and time effects of cadmium on Kandelia obovata (S., L.) Yong root exudation, thereby evaluating and predicting the ecophysiological effects of mangrove to heavy metals at the root level.
View Article and Find Full Text PDF