Publications by authors named "Bosak T"

A major objective of the Mars 2020 mission is to sample rocks in Jezero crater that may preserve organic matter for later return to Earth. Using an ultraviolet Raman and luminescence spectrometer, the Perseverance rover detected luminescence signals with maximal intensities at 330 to 350 nanometers and 270 to 290 nanometers that were initially reported as consistent with organics. Here, we test the alternative hypothesis that the 330- to 350-nanometer and 270- to 290-nanometer luminescence signals trace Ce in phosphate and silicate defects, respectively.

View Article and Find Full Text PDF

The Mars Sample Return mission intends to retrieve a sealed collection of rocks, regolith, and atmosphere sampled from Jezero Crater, Mars, by the NASA Perseverance rover mission. For all life-related research, it is necessary to evaluate water availability in the samples and on Mars. Within the first Martian year, Perseverance has acquired an estimated total mass of 355 g of rocks and regolith, and 38 μmoles of Martian atmospheric gas.

View Article and Find Full Text PDF

Pustular mats from Shark Bay, Western Australia, host complex microbial communities bound within an organic matrix. These mats harbour many poorly characterized organisms with low relative abundances (<1%), such as candidate phyla Hydrogenedentota and Sumerlaeota. Here, we aim to constrain the metabolism and physiology of these candidate phyla by analyzing two representative metagenome-assembled genomes (MAGs) from a pustular mat.

View Article and Find Full Text PDF

Pustular microbial mats in Shark Bay, Western Australia, are modern analogs of microbial systems that colonized peritidal environments before the evolution of complex life. To understand how these microbial communities evolved to grow and metabolize in the presence of various environmental stresses, the horizontal gene transfer (HGT) detection tool, MetaCHIP, was used to identify the horizontal transfer of genes related to stress response in 83 metagenome-assembled genomes from a Shark Bay pustular mat. Subsequently, maximum-likelihood phylogenies were constructed using these genes and their most closely related homologs from other environments in order to determine the likelihood of these HGT events occurring within the pustular mat.

View Article and Find Full Text PDF

Marine ooids have formed in microbially colonized environments for billions of years, but the microbial contributions to mineral formation in ooids continue to be debated. Here we provide evidence of these contributions in ooids from Carbla Beach, Shark Bay, Western Australia. Dark 100-240 μm diameter ooids from Carbla Beach contain two different carbonate minerals.

View Article and Find Full Text PDF
Article Synopsis
  • Perseverance's Mastcam-Z captures detailed stereo and multispectral images, offering a comprehensive view of the geology in Jezero crater on Mars.
  • The rocks depicted show features indicating they are of igneous or impactite origin, with minimal water alteration and include various mineral compositions like mafic silicates and olivine.
  • Additional imaging reveals important atmospheric conditions, including dust variations and unique interactions caused by dust devils and the Ingenuity helicopter, which aid in understanding Mars' environment and assist in rover operations.
View Article and Find Full Text PDF

The Perseverance rover landed in Jezero crater, Mars, in February 2021. We used the Scanning Habitable Environments with Raman and Luminescence for Organics and Chemicals (SHERLOC) instrument to perform deep-ultraviolet Raman and fluorescence spectroscopy of three rocks within the crater. We identify evidence for two distinct ancient aqueous environments at different times.

View Article and Find Full Text PDF

The record of life during the Proterozoic is preserved by several different lithologies, but two in particular are linked both spatially and temporally: chert and carbonate. These lithologies capture a snapshot of dominantly peritidal environments during the Proterozoic. Early diagenetic chert preserves some of the most exceptional Proterozoic biosignatures in the form of microbial body fossils and mat textures.

View Article and Find Full Text PDF

Enzymes catalyze key reactions within Earth's life-sustaining biogeochemical cycles. Here, we use metaproteomics to examine the enzymatic capabilities of the microbial community (0.2 to 3 µm) along a 5,000-km-long, 1-km-deep transect in the central Pacific Ocean.

View Article and Find Full Text PDF

The geological units on the floor of Jezero crater, Mars, are part of a wider regional stratigraphy of olivine-rich rocks, which extends well beyond the crater. We investigated the petrology of olivine and carbonate-bearing rocks of the Séítah formation in the floor of Jezero. Using multispectral images and x-ray fluorescence data, acquired by the Perseverance rover, we performed a petrographic analysis of the Bastide and Brac outcrops within this unit.

View Article and Find Full Text PDF

The Perseverance rover landed in Jezero crater, Mars, to investigate ancient lake and river deposits. We report observations of the crater floor, below the crater's sedimentary delta, finding that the floor consists of igneous rocks altered by water. The lowest exposed unit, informally named Séítah, is a coarsely crystalline olivine-rich rock, which accumulated at the base of a magma body.

View Article and Find Full Text PDF
Article Synopsis
  • Before the Perseverance rover, Jezero crater's floor was theorized to have different origins, including lake-related or volcanic processes.
  • SuperCam's findings over the first 286 days indicated a volcanic terrain characterized by varying compositions, primarily basaltic, with higher levels of plagioclase in upper strata and richer pyroxene in lower strata.
  • The study identified the first Martian cumulate rock, highlighting its olivine-rich content and suggesting brief past watery conditions based on the presence of various alteration materials.
View Article and Find Full Text PDF

Cyanobacteria and extracellular polymeric substances (EPS) in peritidal pustular microbial mats have a two-billion-year-old fossil record. To understand the composition, production, degradation, and potential role of EPS in modern analogous communities, we sampled pustular mats from Shark Bay, Australia and analyzed their EPS matrix. Biochemical and microscopic analyses identified sulfated organic compounds as major components of mat EPS.

View Article and Find Full Text PDF

Observations from orbital spacecraft have shown that Jezero crater on Mars contains a prominent fan-shaped body of sedimentary rock deposited at its western margin. The Perseverance rover landed in Jezero crater in February 2021. We analyze images taken by the rover in the 3 months after landing.

View Article and Find Full Text PDF

The record of the coevolution of oxygenic phototrophs and the environment is preserved in three forms: genomes of modern organisms, diverse geochemical signals of surface oxidation and diagnostic Proterozoic microfossils. When calibrated by fossils, genomic data form the basis of molecular clock analyses. However, different interpretations of the geochemical record, fossil calibrations and evolutionary models produce a wide range of age estimates that are often conflicting.

View Article and Find Full Text PDF

Microbial fossils preserved by early diagenetic chert provide a window into the Proterozoic biosphere, but seawater chemistry, microbial processes, and the interactions between microbes and the environment that contributed to this preservation are not well constrained. Here, we use fossilization experiments to explore the processes that preserve marine cyanobacterial biofilms by the precipitation of amorphous silica in a seawater medium that is analogous to Proterozoic seawater. These experiments demonstrate that the exceptional silicification of benthic marine cyanobacteria analogous to the oldest diagnostic cyanobacterial fossils requires interactions among extracellular polymeric substances (EPS), photosynthetically induced pH changes, magnesium cations (Mg ), and >70 ppm silica.

View Article and Find Full Text PDF

The extent to which nutrients structure microbial communities in permanently stratified lakes is not well understood. This study characterized microbial communities from the anoxic layers of the meromictic and sulfidic Fayetteville Green Lake (FGL), NY, United States, and investigated the roles of organic electron donors and terminal electron acceptors in shaping microbial community structure and interactions. Bacterial communities from the permanently stratified layer below the chemocline (monimolimnion) and from enrichment cultures inoculated by lake sediments were analyzed using 16S rRNA gene sequencing.

View Article and Find Full Text PDF

Three-dimensionally preserved Ediacaran fossils occur globally within sandstone beds. Sandy siliciclastic deposits of the Ediacaran Wood Canyon Formation (WCF) in the Montgomery Mountains, Nevada, contain two fossil morphologies with similar shapes and sizes: one exhibits mm-scale ridges and a distinct lower boundary and the other is devoid of these diagnostic features. We interpret these as taphomorphs of erniettomorphs, soft-bodied organisms with uncertain taxonomic affinities.

View Article and Find Full Text PDF

Methanogenic archaea have been shown to reduce iron from ferric [Fe(III)] to ferrous [Fe(II)] state, but minerals that form during iron reduction by different methanogens remain to be characterized. Here, we show that zerovalent iron (ZVI) minerals, ferrite [α-Fe(0)] and austenite [γ-Fe(0)], appear in the X-ray diffraction spectra minutes after the addition of ferrihydrite to the cultures of a methanogenic archaeon, (). cells and redox-active, nonenzymatic soluble organic compounds in organic-rich spent culture supernatants can promote the formation of ZVI; the latter compounds also likely stabilize ZVI.

View Article and Find Full Text PDF

Oxygenic photosynthesis supplies organic carbon to the modern biosphere, but it is uncertain when this metabolism originated. It has previously been proposed that photosynthetic reaction centres capable of splitting water arose by about 3 billion years ago on the basis of the inferred presence of manganese oxides in Archaean sedimentary rocks. However, this assumes that manganese oxides can be produced only in the presence of molecular oxygen, reactive oxygen species or by high-potential photosynthetic reaction centres.

View Article and Find Full Text PDF

The phylum Cyanobacteria includes free-living bacteria and plastids, the descendants of cyanobacteria that were engulfed by the ancestral lineage of the major photosynthetic eukaryotic group Archaeplastida. Endosymbiotic events that followed this primary endosymbiosis spread plastids across diverse eukaryotic groups. The remnants of the ancestral cyanobacterial genome present in all modern plastids, enable the placement of plastids within Cyanobacteria using sequence-based phylogenetic analyses.

View Article and Find Full Text PDF

The extent of oxygenated environments on the early Earth was much lower than today, and cyanobacteria were critical players in Earth's shift from widespread anoxia to oxygenated surface environments. Extant cyanobacteria that aggregate into cones, tufts and ridges are used to understand the long record of photosynthesis and microbe-mineral interactions during times when oxygen was much lower, i.e.

View Article and Find Full Text PDF

The ability to measure partial pressures of oxygen below 100 microbars and nanomolar dissolved oxygen concentrations in in situ laboratory systems benefits many fields including microbiology, geobiology, oceanography, chemistry, and materials science. Here, we present an easily constructible open-source design for a networked luminescence lifetime measurement system for in situ measurements in arbitrary laboratory containers. The system is well suited for measuring oxygen partial pressures in the 0-100 μbar range, with the maximum potentially usable upper range limit at around 10 mbar, depending on experimental conditions.

View Article and Find Full Text PDF

The Martian surface is cold, dry, exposed to biologically harmful radiation and apparently barren today. Nevertheless, there is clear geological evidence for warmer, wetter intervals in the past that could have supported life at or near the surface. This evidence has motivated National Aeronautics and Space Administration and European Space Agency to prioritize the search for any remains or traces of organisms from early Mars in forthcoming missions.

View Article and Find Full Text PDF

We investigated the influence of organic substrates and phosphate concentration on the rates of dissimilatory microbial sulfate reduction and the S/S isotopic fractionation produced by several species. Our experiments corroborate the previously reported species-specific correlation between sulfur isotope fractionation and cell-specific sulfate reduction rates. We also identify cell size as a key factor that contributes to the species-effect of this correlation.

View Article and Find Full Text PDF