Fatty acids (FA) are the main constituents of lipids and oil crop waste, considered to be a promising 2G biomass that can be converted into ketenes via catalytic pyrolysis. Ketenes are appraised as promising synthons for the pharmaceutical, polymer, and chemical industries. Progress in the thermal conversion of short- and long-chain fatty acids into ketenes requires a deep understanding of their interaction mechanisms with the nanoscale oxide catalysts.
View Article and Find Full Text PDFIn this study, chemical transformations of benzyl ester of О-(phenyl-2-acetamido-2,3-dideoxy-1-thio-β-d-glucopyranoside-3-yl)-d-lactoyl-l-alanyl-d-isoglutamine (SPhMDPOBn) on the fumed silica surface were examined, and the surface complex structure was characterized by temperature-programmed desorption mass spectrometry (TPD-MS), infrared spectroscopy (FTIR) and electrospray ion trap mass spectrometry (ES IT MS). Stages of pyrolysis of SPhMDPOBn in pristine state and on the silica surface have been determined. Probably, hydrogen-bonded complex forms between silanol surface groups and the C = O group of the acetamide moiety NH-(CH3)-C = O…H-O-Si≡.
View Article and Find Full Text PDF