Publications by authors named "Borowicz P"

Introduction: Maternal nutrition during pregnancy critically influences offspring development and immune function. One-carbon metabolites (OCM) are epigenetic modifiers that may modulate antimicrobial peptide (AMP) expression, which is vital for innate immunity. This study investigated the effects of maternal nutrient restriction and OCM supplementation on mRNA expression of AMP in fetal and maternal lung, mammary gland, and small intestine of beef cattle.

View Article and Find Full Text PDF

Maternal periconceptual nutrition affects the growth trajectory of developing fetuses by modulating gene expression. The regulatory mechanisms and their role in fetal development remain underexplored in livestock models. Herein, we investigated the effects of maternal rate of body weight (BW) gain during early gestation on the DNA methylation, microRNA profiles, and their interaction with the hepatic gene expression in female fetuses.

View Article and Find Full Text PDF

Rambouillet rams were managed on either a positive (POS; gain 12% body weight [BW]; n = 8), maintenance (MAINT; maintain BW; n = 8), or negative (NEG; lose 12% BW; n = 8) plane of nutrition before breeding. Rams were bred to ewes (n = 10 per ram) that were managed similarly throughout gestation, and lambs were fed a common diet postnatally. Two ewe lambs (7.

View Article and Find Full Text PDF

Our aim was to investigate the effects of maternal (F0) body weight (BW) gain during the first 84 d of gestation on body composition, ovarian reserve, and hormonal and metabolic parameters of breeding-age F1 heifers, as well as the BW and morphometry of F2 fetuses. The study also evaluated the effect of maternal BW gain (F0) on the mRNA relative abundance of the small intestine of both F1 heifers and F2 fetuses. Crossbred Angus heifers (F0; n = 100) were managed to gain 0.

View Article and Find Full Text PDF

The ability of laser scanning confocal microscopy to generate high-contrast 2D and 3D images has become essential in studying plant-fungal interactions. Techniques such as visualization of native fluorescence, fluorescent protein tagging of microbes, green fluorescent protein (GFP)/red fluorescent protein (RFP)-fusion proteins, and fluorescent labeling of plant and fungal proteins have been widely used to aid in these investigations. Use of fluorescent proteins has several pitfalls, including variability of expression in planta and the requirement of gene transformation.

View Article and Find Full Text PDF
Article Synopsis
  • * The study examined how nutrient restriction and OCM supplementation affect fetal liver metabolomics in beef heifers, with different dietary patterns over a 63-day gestation period.
  • * Findings revealed that restricted diets decreased metabolite levels linked to amino acid and energy metabolism, while OCM supplementation enhanced metabolite abundance important for fetal growth and health.
View Article and Find Full Text PDF

One-carbon metabolites (OCM) are metabolites and cofactors which include folate, vitamin B12, methionine, and choline that support methylation reactions. The objectives of this study were to investigate the effects of moderate changes in maternal body weight gain in combination with OCM supplementation during the first 63 d of gestation in beef cattle on (1) B12 and folate concentrations in maternal serum (2) folate cycle intermediates in maternal and fetal liver, allantoic fluid (ALF), and amniotic fluid (AMF) and (3) metabolites involved in one-carbon metabolism and related metabolic pathways in maternal and fetal liver. Heifers were either intake restricted (RES) and fed to lose 0.

View Article and Find Full Text PDF

Endometrial-derived uterine histotroph is a critical component of nutrient supply to a growing conceptus throughout gestation; however, the effect of nutritional plane on histotroph nutrient composition remains unknown in multiparous cows. We hypothesized that differing planes of nutrition would alter histotroph and serum nutrient composition in beef cattle. Thus, we evaluated serum and histotroph amino acid and glucose composition, and serum non-esterified fatty acids (NEFA) and blood urea nitrogen (BUN) in cows individually fed to maintain body weight (BW; 0 kd/d, n = 9; CON) compared with those losing moderate BW (-0.

View Article and Find Full Text PDF

This Future Challenges article summarizes views on future directions in immunological research presented at round-table discussions at the 4th Immunology workshop in the Lofoten Islands in Norway, held in August 2023, and subsequent responses to surveys sent to meeting participants. It also summarizes some of the conversations around the responsibility of scientists to communicate with the non-science community, and the approaches that we may use to meet this obligation.

View Article and Find Full Text PDF
Article Synopsis
  • * A study with crossbred Angus heifers revealed that different rates of maternal weight gain and nutrient supplementation led to notable differences in fetal liver development and gene expression, identifying 320 differentially expressed genes (DEGs) and 99 differentially expressed long non-coding RNAs (lncRNAs).
  • * The research highlights the importance of lncRNAs in regulating pathways related to energy metabolism and mineral homeostasis in the fetal liver, indicating that early maternal nutrition impacts fetal growth and development.
View Article and Find Full Text PDF

The neonatal Fc receptor (FcRn) is the receptor responsible for bidirectional transport of immunoglobulin G (IgG) across cells, maintenance of IgG levels in serum, and assisting with antigen presentation. Unfortunately, little is known about FcRn in horses. Therefore, the objective of this study was to provide fundamental information regarding the location of FcRn in equine tissues.

View Article and Find Full Text PDF
Article Synopsis
  • The study examined how nutrient restriction and one-carbon metabolite (OCM) supplementation affect fetal small intestine development in crossbred Angus beef heifers during early gestation.
  • Heifers were divided into four groups based on their feeding regimen: a control group with normal intake and an OCM group, versus a restricted intake group with and without OCM.
  • Results showed that while the nutritional intake had no significant effect on fetal small intestine weight, OCM supplementation led to reduced weight, increased capillary density, and decreased cell proliferation in the tissue of fetuses from restricted-fed heifers.
View Article and Find Full Text PDF
Article Synopsis
  • The study assessed the impact of vitamin and mineral supplementation (VTM) and varying rates of weight gain (GAIN) on the development of placental blood vessels and gene expression in crossbred Angus heifers.
  • In Experiment 1, heifers were split into groups based on VTM treatment and weight gain rates, with evaluations showing no significant effects on placental vascularity or angiogenic factors gene expression.
  • Experiment 2 highlighted that while baseline control (CON) heifers had lower cotyledon vascularity, those receiving VTM showed a tendency for greater vascularity, suggesting the importance of continued supplementation during later stages of pregnancy.
View Article and Find Full Text PDF

We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.

View Article and Find Full Text PDF

Developmental programming, which proposes that "insults" or "stressors" during intrauterine or postnatal development can have not only immediate but also long-term consequences for healthy and productivity, has emerged as a major biological principle, and based on studies in many animal species also seems to be a universal phenomenon. In eutherians, the placenta appears to be programmed during its development, which has consequences for fetal growth and development throughout pregnancy, and likewise has long-term consequences for postnatal development, leading to programming of organ function of the offspring even into adulthood. This review summarizes our current understanding of the placenta's role in developmental programming, the mechanisms involved, and the challenges remaining.

View Article and Find Full Text PDF

Pancreatic cancer patients predominantly present with advanced disease at diagnosis, contributing to its high mortality. A noninvasive, fast screening method to detect this disease is an unmet need. Tumor-derived extracellular vesicles (tdEVs) bearing information from parental cells have emerged as a promising cancer diagnostic biomarker.

View Article and Find Full Text PDF
Article Synopsis
  • Cercospora leaf spot (CLS) is a harmful disease affecting sugar beet, caused by a fungal pathogen that induces cell death and produces harmful substances.
  • This research analyzed the early infection stages of CLS in both susceptible and resistant sugar beet varieties using confocal microscopy over the first 5 days after inoculation.
  • Findings revealed that the susceptible variety experienced significantly more fungal growth, cell death, and disease severity compared to the resistant one, with infection processes varying depending on the time post-inoculation and plant genotype.
View Article and Find Full Text PDF
Article Synopsis
  • Researchers developed redox-active molecularly imprinted polymer nanoparticles (MIP-Gly NPs) specifically designed to selectively detect glyphosate (Gly) without needing additional redox probes.
  • These nanoparticles were synthesized with ferrocenyl components, allowing them to be electroactive and provide a straightforward detection mechanism.
  • Testing showed that MIP-Gly NPs could effectively measure glyphosate in spiked river water, with high sensitivity (limit of detection at 3.7 pM) and a linear concentration range from 25 pM to 500 pM.
View Article and Find Full Text PDF

Herein, we present a dataset based on the RNA-Seq analysis of liver tissue from bovine female fetuses at day 83 of gestation. The findings were reported in the main article, "Periconceptual maternal nutrition affects fetal liver programming of energy- and lipid-related genes" [1]. These data were generated to investigate the effects of periconceptual maternal vitamin and mineral supplementation and rates of body weight gain on the transcript abundance of genes associated with fetal hepatic metabolism and function.

View Article and Find Full Text PDF

Adequate maternal nutrition is key for proper fetal development and epigenetic programming. One-carbon metabolites (OCM), including vitamin B12, folate, choline, and methionine, play a role in epigenetic mechanisms associated with developmental programming. This study investigated the presence of B12 and folate in maternal serum, allantoic fluid (ALF), and amniotic fluid (AMF), as well as how those concentrations in all three fluids correlate to the concentrations of methionine-folate cycle intermediates in heifers receiving either a control (CON) or restricted (RES) diet for the first 50 d of gestation and fetal hepatic gene expression for methionine-folate cycle enzymes.

View Article and Find Full Text PDF

In Brief: Developmental programming refers to the long-term programming of gene expression during fetal and postnatal development, resulting in altered organ function even into adulthood. This review describes how maternal and paternal sustenance and stress, as well as fetal sex, all matter in large animal models and affect developmental programming of the offspring.

Abstract: Developmental programming is the concept that certain health outcomes throughout life can be linked to early fetal or postnatal development.

View Article and Find Full Text PDF

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d).

View Article and Find Full Text PDF

During pregnancy, the fetus relies on the dam for its nutrient supply. Nutritional stimuli during fetal organ development can program hepatic metabolism and function. Herein, we investigated the role of vitamin and mineral supplementation (VTM or NoVTM-at least 71 days pre-breeding to day 83 of gestation) and rate of weight gain (low (LG) or moderate (MG)-from breeding to day 83) on the fetal liver transcriptome and the underlying biological pathways.

View Article and Find Full Text PDF

Developmental programming is the concept that 'stressors' during development (i.e. pregnancy, the perinatal period and infancy) can cause long-term changes in gene expression, leading to altered organ structure and function.

View Article and Find Full Text PDF