To date, a general approach for the direct α-acyloxylation of cyclic 1,3-dicarbonyls remains challenging. Herein, we report a Pd-catalyzed α-acyloxylation of cyclic 1,3-dicarbonyl-derived hypervalent iodine compounds with highly abundant carboxylic acids. Our approach utilizes a commercially available Pd(OAc) catalyst, which exhibits mild reaction conditions, scalability, operational simplicity, and robustness against moisture and air.
View Article and Find Full Text PDFTo date, the general and catalytic α-arylation of cyclic 1,3-dicarbonyls remains elusive. We now report the first Rh-catalyzed α-arylation of cyclic 1,3-dicarbonyls with benzocyclobutenols through a cyclic iodonium ylide strategy. Our strategy represents a good solution for the previously challenging α-arylation of cyclic 1,3-dicarbonyls with sterically demanding aryl partners, which is especially appropriate for structurally unique heteroaromatic 1,3-dicarbonyls.
View Article and Find Full Text PDFThe first ruthenium-catalyzed carboamination of olefins with α-carbonyl sulfoxonium ylides is reported. The utilization of an inexpensive ruthenium catalyst enables the concise synthesis of pharmaceutically important isoindolin-1-ones, which possess both a stereogenic center and β-carbonyl side chain. This method is mild, efficient, and scalable and allows for the coupling of a wide range of aryl-, heteroaryl-, alkenyl-, and alkyl-substituted sulfoxonium ylides.
View Article and Find Full Text PDFHerein, we introduce an iodonium ylide strategy to achieve novel α-alkylation of cyclic 1,3-dicarbonyls through harnessing C(sp)-Rh species generated from 5-- cyclization to provide rapid access to molecular hybridization of medically important isoindolin-1-ones and cyclic 1,3-dicarbonyls from readily available substrates. This approach features mild conditions, good yield, excellent functional group tolerance, and the simultaneous formation of two new chemical bonds and one stereogenic center. Moreover, the hydroxyl group of resulting product provides a good handle for downstream transformations.
View Article and Find Full Text PDF