Nanomaterials (Basel)
November 2024
This study investigates the structural and optical responses of silica glass to femtosecond (fs) laser irradiation followed by high-energy electron (2.5 MeV, 4.9 GGy) irradiation.
View Article and Find Full Text PDFThis study explores the structural transformations induced by femtosecond (fs) laser inscriptions in glass, with a focus on type II modifications (so-called nanogratings), crucial for advanced optical and photonic technologies. Our novel approach employs scattering-type scanning near-field optical microscopy (s-SNOM) and synchrotron radiation nanoscale Fourier-transform infrared spectroscopy (nano-FTIR) to directly assess the nanoscale structural changes in the laser tracks, potentially offering a comprehensive understanding of the underlying densification mechanisms. The results reveal the first direct nanoscale evidence of densification driven by HP-HT within fs-laser inscribed tracks, characterized by a significant shift of the main infrared (IR) vibrational structural band of silica glass.
View Article and Find Full Text PDFFiber Bragg gratings are key components for optical fiber sensing applications in harsh environments. This paper investigates the structural and chemical characteristics of femtosecond laser photo-inscribed microvoids. These voids are at the base of type III fs-gratings consisting of a periodic array of microvoids inscribed at the core of an optical fiber.
View Article and Find Full Text PDFInfrared scattering-type near-field optical microscopy, IR s-SNOM, and its broadband variant, nano-FTIR, are pioneering, flagship techniques for their ability to provide molecular identification and material optical property information at a spatial resolution well below the far-field diffraction limit, typically less than 25 nm. While s-SNOM and nano-FTIR instrumentation and data analysis have been discussed previously, there is a lack of information regarding experimental parameters for the practitioner, especially in the context of previously developed frameworks. Like conventional FTIR spectroscopy, the critical component of a nano-FTIR instrument is an interferometer.
View Article and Find Full Text PDFJ Synchrotron Radiat
May 2024
With several fourth-generation, or diffraction-limited, storage rings and multiple beamlines in operation, the missing range of the spectrum was infrared…until recently.
View Article and Find Full Text PDFAttenuated total reflection (ATR) microscope Fourier transform infrared (micro-FTIR) spectroscopy was used to investigate the dinosporin composition in the walls of modern, organic-walled dinoflagellate resting cysts (dinocysts). Variable cyst wall compositions were observed, which led to the erection of four spectrochemical groups, some with striking similarities to other resistant biomacromolecules such as sporopollenin and algaenan. Furthermore, possible proxies derivable from the spectrochemical composition of modern and fossil dinocysts were discussed.
View Article and Find Full Text PDFMid-infrared microspectroscopy is a non-invasive tool for identifying the molecular structure and chemical composition at the scale of the probe, at the scale of the beam. Consequently, investigating small objects or domains (commensurable to the wavelength) requires high-resolution measurements, even down to the diffraction limit. Herein, different protocols and machines allowing high-resolution measurements in transmission mode (aperture size (, beam size) from 15 × 15 μm to 3 × 3 μm) are tested using the same sample.
View Article and Find Full Text PDFIt is well known that infrared microscopy of micrometer sized samples suffers from strong scattering distortions, attributed to Mie scattering. The state-of-the-art preprocessing technique for modelling and removing Mie scattering features from infrared absorbance spectra of biological samples is built on a meta model for perfect spheres. However, non-spherical cell shapes are the norm rather than the exception, and it is therefore highly relevant to evaluate the validity of this preprocessing technique for deformed spherical systems.
View Article and Find Full Text PDFInfrared spectroscopic imaging is widely used for the visualization of biomolecule structures, and techniques such as optical photothermal infrared (OPTIR) microspectroscopy can achieve <500 nm spatial resolution. However, these approaches lack specificity for particular cell types and cell components and thus cannot be used as a stand-alone technique to assess their properties. Here, we have developed a novel tool, fluorescently guided optical photothermal infrared microspectroscopy, that simultaneously exploits epifluorescence imaging and OPTIR to perform fluorescently guided IR spectroscopic analysis.
View Article and Find Full Text PDFHuman hair medulla chemical composition appears mostly homogenous when mapped by FTIR microspectroscopy even when using a synchrotron radiation source (SR-μFTIR) but it is expected to be heterogeneous. We performed sub-micron chemical mapping of hair cortex and medullas using Optical Photothermal Infrared microspectroscopy (OPTIR) and a mid-infrared Quantum Cascade Laser (QCL) source covering the fingerprint and the CH stretching region. Photodamages were observed in the hair cortex at mild laser power and occurred in the hair medulla even at the lowest power settings of the IR QCL pulsed at 100 kHz rate (4 μW/μm average power density) and visible probe laser (200 μw/μm average power density).
View Article and Find Full Text PDFWhen a sample has an anisotropic structure, it is possible to obtain additional information controlling the polarization of incident light. With their straightforward instrumentation approaches, infrared (IR) and Raman spectroscopies are widely popular in this area. Single-band-based determination of molecular in-plane orientation, typically used in materials science, is here extended by the concurrent use of two vibration bands, revealing the orientational ordering in three dimension.
View Article and Find Full Text PDFLight microscopy has been a favorite tool of biological studies for almost a century, recently producing detailed images with exquisite molecular specificity achieving spatial resolution at nanoscale. However, light microscopy is insufficient to provide chemical information as a standalone technique. An increasing amount of evidence demonstrates that optical photothermal infrared microspectroscopy (O-PTIR) is a valuable imaging tool that can extract chemical information to locate molecular structures at submicron resolution.
View Article and Find Full Text PDFUltrastrong coupling of light and matter creates new opportunities to modify chemical reactions or develop novel nanoscale devices. One-dimensional Luttinger-liquid plasmons in metallic carbon nanotubes are long-lived excitations with extreme electromagnetic field confinement. They are promising candidates to realize strong or even ultrastrong coupling at infrared frequencies.
View Article and Find Full Text PDFOptical photothermal infrared (O-PTIR) is a recently developed molecular spectroscopy technique that allows to noninvasively obtain chemical information on organic and inorganic samples at a submicrometric scale. The high spatial resolution (≈450 nm), lack of sample preparation, and comparability of the spectral results to traditional Fourier transform infrared spectroscopy make it a promising candidate for the analysis of cultural heritage. In this work, the potential of O-PTIR for the noninvasive characterization of small heritage objects (few cubic centimeters) is demonstrated on a series of degraded 16th century brass and glass decorative elements.
View Article and Find Full Text PDFUnlabelled: Arterial calcification is a common feature of pseudoxanthoma elasticum (PXE), a disease characterized by mutations, inducing a deficiency in pyrophosphate, a key inhibitor of calcium phosphate crystallization in arteries.
Methods: we analyzed whether long-term exposure of Abcc6 mice (a murine model of PXE) to a mild vitamin D supplementation, with or without calcium, would impact the development of vascular calcification. Eight groups of mice (including Abcc6 and wild-type) received vitamin D supplementation every 2 weeks, a calcium-enriched diet alone (calcium in drinking water), both vitamin D supplementation and calcium-enriched diet, or a standard diet (controls) for 6 months.
Formation and aggregation of metal carboxylates (metal soaps) can degrade the appearance and integrity of oil paints, challenging efforts to conserve painted works of art. Endeavors to understand the root cause of metal soap formation have been hampered by the limited spatial resolution of Fourier transform infrared microscopy (μ-FTIR). We overcome this limitation using optical photothermal infrared spectroscopy (O-PTIR) and photothermal-induced resonance (PTIR), two novel methods that provide IR spectra with ≈500 and ≈10 nm spatial resolutions, respectively.
View Article and Find Full Text PDFAlzheimer's disease (AD) accounts for about 70% of neurodegenerative diseases and is a cause of cognitive decline and death for one-third of seniors. AD is currently underdiagnosed, and it cannot be effectively prevented. Aggregation of amyloid-β (Aβ) proteins has been linked to the development of AD, and it has been established that, under pathological conditions, Aβ proteins undergo structural changes to form β-sheet structures that are considered neurotoxic.
View Article and Find Full Text PDFDevelopment of sustainable processes for hydrocarbons synthesis is a fundamental challenge in chemistry since these are of unquestionable importance for the production of many essential synthetic chemicals, materials and carbon-based fuels. Current industrial processes rely on non-abundant metal catalysts, temperatures of hundreds of Celsius and pressures of tens of bars. We propose an alternative gas phase process under mild reaction conditions using only atomic carbon, molecular hydrogen and an inert carrier gas.
View Article and Find Full Text PDFData volumes collected in many scientific fields have long exceeded the capacity of human comprehension. This is especially true in biomedical research where multiple replicates and techniques are required to conduct reliable studies. Ever-increasing data rates from new instruments compound our dependence on statistics to make sense of the numbers.
View Article and Find Full Text PDFIn infrared spectroscopy of thin film samples, interference introduces distortions in spectra, commonly referred to as fringes. Fringes may alter absorbance peak ratios, which hampers the spectral analysis. We have previously introduced extended multiplicative signal correction (EMSC) for fringes correction.
View Article and Find Full Text PDFThe debate of whether a glass substrate can be used in Fourier transform infrared spectroscopy is strongly linked to its potential clinical application. Histopathology glass slides of 1 mm thickness absorb the mid-IR spectrum in the rich fingerprint spectral region. Thus, it is important to assess whether emerging IR techniques can be employed to study biological samples placed on glass substrates.
View Article and Find Full Text PDFAlzheimer's disease (AD) is the most common cause of dementia, costing about 1% of the global economy. Failures of clinical trials targeting amyloid-β protein (Aβ), a key trigger of AD, have been explained by drug inefficiency regardless of the mechanisms of amyloid neurotoxicity, which are very difficult to address by available technologies. Here, we combine two imaging modalities that stand at opposite ends of the electromagnetic spectrum, and therefore, can be used as complementary tools to assess structural and chemical information directly in a single neuron.
View Article and Find Full Text PDFOptical-photothermal infrared (O-PTIR) spectroscopy is a recently developed technique that provides spectra comparable to traditional transmission FTIR spectroscopy with nanometric spatial resolution. Hence, O-PTIR is a promising candidate for the analysis of historical paintings, as well as other cultural heritage objects, but its potential has not yet been evaluated. This work presents the first application of O-PTIR to the analysis of cultural heritage, and in particular to an extremely small fragment from Van Gogh's painting L'Arlésienne (portrait of Madame Ginoux).
View Article and Find Full Text PDFHuman hair is an organ that connects fundamental and applied research with everyday life through the cosmetic industry. Yet, the accurate compositional description of the human hair medulla is lacking due to their small size and difficulty with microextraction. Medullas are thus generally classified based on morphology.
View Article and Find Full Text PDF