The design, synthesis, and biological evaluation of potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1) are reported. A novel series of 3,4-dihydro-2H-[1,4]diazepino[6,7,1-hi]indol-1-ones were designed using a combination of protein structure-based drug design, molecular modeling, and structure-activity relationships (SAR). These novel submicromolar inhibitors possess a tricyclic ring system conformationally restricting the benzamide in the preferred cis orientation.
View Article and Find Full Text PDFThe nuclear enzyme poly(ADP-ribose) polymerase (PARP-1) facilitates DNA repair, and is, therefore, an attractive target for anticancer chemo- and radio-potentiation. Novel benzimidazole-4-carboxamides (BZ1-6) and tricyclic lactam indoles (TI1-5) with PARP-1 K(i) values of <10 nM have been identified. Whole cell PARP-1 inhibition, intrinsic cell growth inhibition, and chemopotentiation of the cytotoxic agents temozolomide (TM) and topotecan (TP) were evaluated in LoVo human colon carcinoma cells.
View Article and Find Full Text PDFA series of novel compounds have been designed that are potent inhibitors of poly(ADP-ribose) polymerase-1 (PARP-1), and the activity and physical properties have been characterized. The new structural classes, 3,4,5,6-tetrahydro-1H-azepino[5,4,3-cd]indol-6-ones and 3,4-dihydropyrrolo[4,3,2-de]isoquinolin-5-(1H)-ones, have conformationally locked benzamide cores that specifically interact with the PARP-1 protein. The compounds have been evaluated with in vitro cellular assays that measure the ability of the PARP-1 inhibitors to enhance the effect of cytotoxic agents against cancer cell lines.
View Article and Find Full Text PDFThe combined action among polyglutamylatable and nonpolyglutamylatable antifolates, directed against dihydrofolate reductase (DHFR), glycinamide ribonucleotide formyltransferase (GARFT), 5-aminoimidazole-4-carboxamide ribonucleotide formyltransferase (AICARFT), and thymidylate synthase (TS), in human ileocecal HCT-8 cells was examined in a 96-well plate growth inhibition assay (96-h continuous drug exposure). An interaction parameter, alpha, was estimated for each of 95 experiments by fitting a seven-parameter model to data with weighted nonlinear regression. In a representative experiment, raising the folic acid concentration in the medium dramatically increased the Loewe synergy for the combination of trimetrexate (TMTX) and the GARFT inhibitor AG2034 (from a mean alpha +/- SE of 1.
View Article and Find Full Text PDFCancer Chemother Pharmacol
February 1998
Purpose: We studied the effects of purine depletion on the cell cycle using a specific inhibitor of de novo purine biosynthesis, AG2034, an inhibitor of glycinamide ribonucleotide formyltransferase (GARFT).
Methods: Cytotoxicity was determined by clonogenic assays, and cell cycle perturbations by flow cytometry. Ribonucleotide pools were measured by anion exchange high-pressure liquid chromatography, and DNA strand-breaks were determined by alkaline elution and by the TUNEL assay.
Nelfinavir mesylate (formerly AG1343) is a potent and selective, nonpeptidic inhibitor of human immunodeficiency virus type 1 (HIV-1) protease that was discovered by protein structure-based design methodologies. We evaluated the antiviral and cytotoxic effects of two-drug combinations of nelfinavir with the clinically approved antiretroviral therapeutics zidovudine (ZDV), lamivudine (3TC), dideoxycytidine (ddC; zalcitabine), stavudine (d4T), didanosine (ddI), indinavir, saquinavir, and ritonavir and a three-drug combination of nelfinavir with ZDV and 3TC against an acute HIV-1 strain RF infection of CEM-SS cells in vitro. Quantitative assessment of drug interaction was evaluated by a universal response surface approach (W.
View Article and Find Full Text PDFThe design, synthesis, biochemical, and biological evaluation of a novel series of 5-thia-2,6-diamino-4(3H)-oxopyrimidine inhibitors of glycinamide ribonucleotide transformylase (GART) are described. The compounds were designed using the X-ray crystal structure of human GART. The monocyclic 5-thiapyrimidinones were synthesized by coupling an alkyl thiol with 5-bromo-2, 6-diamino-4(3H)-pyrimidinone, 20.
View Article and Find Full Text PDFInvest New Drugs
April 1997
The glycinamide ribonucleotide formyltransferase (GARFT) inhibitor, 4-[2-(2-amino-4-oxo-4,6,7,8-tetrahydro-3H-pyrimidino[5,4-6] [1,4]thiazin-6-yl)-(S)-ethyl]-2,5-thienoyl-L-glutamic acid (AG2034), was designed from the X-ray structure of the GARFT domain of the human tri functional enzyme. AG2034 inhibits human GARFT (Ki = 28 nM), has a high affinity for the folate receptor (Kd = 0.0042 nM), and is a substrate for rat liver folylpolyglutamate synthetase (K(m) = 6.
View Article and Find Full Text PDFCancer Chemother Pharmacol
June 1996
3,4-Dihydro-2-amino-6 methyl-4-oxo-5-(4-pyridylthio)-quinazoline dihydrochloride (AG337) is a water-soluble, lipophilic inhibitor of thymidylate synthase (TS) designed using X-ray structure - based methodologies to interact at the folate cofactor binding site of the enzyme. The aim of the design program was to identify TS inhibitors with different pharmacological characteristics from classical folate analogs and, most notably, to develop non-glutamate-containing molecules which would not require facilitated transport for uptake and would not undergo intracellular polyglutamylation. One molecule which resulted from this program, AG337, inhibits purified recombinant human TS with a Ki of 11 nM, and displays non-competitive inhibition kinetics.
View Article and Find Full Text PDFTwo closely-related aniline monomustards (1 and 2), linked to a DNA-targeting acridine chromophore by a linker chain of different length, show high selectivity for alkylation of polymer DNA. The shorter-chain derivative (2) alkylates mainly at guanine N7 sites, while the longer-chain analogue (1) reacts almost exclusively at adenine N1. The biological effects of these compounds have been studied in standard Ames Salmonella typhimurium strains in order to determine the mutagenic consequences of such well-defined DNA lesions, and the effect of DNA-repair systems on them.
View Article and Find Full Text PDFDNA adducts of two acridine-linked aniline half-mustards have been isolated and identified. The compound where the half-mustard is attached to the DNA-targeting acridine moiety by a short linker chain alkylates both double- and single-stranded DNA exclusively at guanine N7, as do the majority of known aromatic and aliphatic nitrogen mustards. The longer-chain analogue, also containing a more reactive half-mustard, shows a strikingly different pattern, alkylating double-stranded DNA to yield primarily (> 90%) the adenine N1 adduct, together with < 10% of the adenine N3 adduct and only trace amounts of the guanine N7 adduct.
View Article and Find Full Text PDFThe aminopyrimidopyrimidine nucleoside 4-amino-8-(beta-D-ribofuranosylamino)pyrimido[5,4-d]pyrimidine (APP), which was previously shown to possess experimental antitumor and antiviral activity, was metabolized within WI-L2 human lymphoblastoid cells to a derivative identified as the beta-D-ribonucleotide (APP-MP). In a subline of WI-L2 cells deficient in adenosine kinase, this metabolite was not formed and APP was not cytotoxic, suggesting that APP is converted by adenosine kinase to its 5'-monophosphate. Because no evidence of di- or triphosphates was seen, the monophosphate appeared to be the active species.
View Article and Find Full Text PDFFour series of acridine-linked aniline mustards have been prepared and evaluated for in vitro cytotoxicity, in vivo antitumor activity, and DNA cross-linking ability. The anilines were attached to the DNA-intercalating acridine chromophores by link groups (-O-, -CH2-, -S-, and -SO2-) of widely varying electronic properties, providing four series of widely differing mustard reactivity where the alkyl chain linking the acridine and mustard moieties was varied from two to five carbons. Relationships were sought between chain length and biological properties.
View Article and Find Full Text PDFA series of DNA-targeted aniline mustards have been prepared, and their chemical reactivity and in vitro and in vivo cytotoxicity have been evaluated and compared with that of the corresponding simple aniline mustards. The alkylating groups were anchored to the DNA-intercalating 9-aminoacridine chromophore by an alkyl chain of fixed length attached at the mustard 4-position through a link group X, while the corresponding simple mustards possessed an electronically identical small group at this position. The link group was varied to provide a series of compounds of similar geometry but widely differing mustard reactivity.
View Article and Find Full Text PDF1. APP is activated by adenosine kinase to its 5'-phosphate (APP-MP). 2.
View Article and Find Full Text PDFFostriecin is a new antitumor antibiotic which is being developed further as an anticancer agent based on its marked activity in murine leukemias. Its mechanism of action, however, has thus far remained unknown. The present study demonstrates that fostriecin inhibits the catalytic activity of partially purified type II topoisomerase from Ehrlich ascites carcinoma.
View Article and Find Full Text PDF1. Guanine-7-oxide is a novel purine antibiotic produced by a Streptomyces species, ATCC 39364. 2.
View Article and Find Full Text PDFCI-937 and CI-942 belong to a new class of DNA complexers, the anthra[1,9-cd]pyrazol-6(2H)-ones (anthrapyrazoles), and are being further developed as antitumor drugs based on their curative properties against murine solid tumour models. The biochemical effects of these agents were studied in L1210 leukemia in relation to other clinically used intercalators. After a 1-hr exposure, CI-937 and CI-942 reduced the cloning efficiency of L1210 cells by 50% at 3.
View Article and Find Full Text PDF2-beta-D-Ribofuranosyl-4-selenazolecarboxamide (selenazofurin, CI-935), the selenium analog of tiazofurin (CI-909), was 3- to 10-fold more cytotoxic to murine or human tumor cells in vitro than tiazofurin and was also more active against P388 mouse leukemia in vivo. In vitro cytotoxicity could be reversed by guanosine or guanine but not by other purine nucleosides or bases. Three human tumor cell lines selected for selenazofurin or tiazofurin resistance showed cross resistance between selenazofurin and tiazofurin.
View Article and Find Full Text PDF3-Deazaguanine (dezaguanine, USAN; CI-908) is a new antipurine antimetabolite which is entering Phase I studies in the USA. This compound differs from guanine only in the substitution of a carbon for the 3-nitrogen of guanine. Dezaguanine has an unusual spectrum of activity against experimental rodent tumors; its activity against transplantable rodent leukemias is only modest, but it has significant activity against transplantable rodent solid tumors, particularly mammary adenocarcinomas.
View Article and Find Full Text PDFCI-920 is a structurally novel, phosphate-containing polyene lactone antitumor agent isolated from a previously undescribed subspecies of Streptomyces pulveraceus cultured from a Brazilian soil sample. CI-920 was active against murine leukemia P388, and highly active and curative against L1210 leukemia in vivo. CI-920 was less active or inactive against the murine solid tumors tested.
View Article and Find Full Text PDFCl-920 is a structurally novel antitumor antibiotic which has activity against a wide spectrum of tumor cells in vitro and is curative in L1210 leukemia in vivo. Several lines of evidence indicate that this drug penetrates L1210 cells via the reduced folate carrier system. Reduced folates (100 microM) including leucovorin and 5-methyltetrahydrofolate completely protected L1210 cells from growth inhibition by Cl-920.
View Article and Find Full Text PDFCancer Chemother Pharmacol
November 1984
Biochemical studies on a new antitumor antibiotic, CI-920, have been directed toward understanding its mode of action. The most striking effect brought on by CI-920 was a marked inhibition of macromolecular synthesis. L1210 leukemia cells exposed to 10 microM CI-920 exhibited a decreased rate of DNA, RNA, and protein synthesis within 45 min, and maximal inhibition occurred within 60 min.
View Article and Find Full Text PDFTrimetrexate is a novel lipophilic folate antagonist that causes growth inhibition, inhibition of nucleic acid biosynthesis, and cytotoxicity at nanomolar concentrations in tissue cultures. The potency of trimetrexate cytotoxicity against most cell lines is greater than that of methotrexate. Trimetrexate has antitumor activity in vivo in several murine leukemia and solid tumor systems, including tumors in which methotrexate is inactive.
View Article and Find Full Text PDF