Background: Amalgamation of metal-tolerant plant growth promoting rhizobacteria (PGPR) with biochar is a promising direction for the development of chemical-free biofertilizers that can mitigate environmental risks, enhance crop productivity and their biological value. The main objective of the work includes the evaluation of the influence of prepared bacterial biofertilizer (BF) on biometric growth parameters as well as physiological and biochemical characteristics of rapeseed ( L.) at copper action.
View Article and Find Full Text PDFThe electronic and nuclear dynamics inside molecules are essential for chemical reactions, where different pathways typically unfold on ultrafast timescales. Extreme ultraviolet (XUV) light pulses generated by free-electron lasers (FELs) allow atomic-site and electronic-state selectivity, triggering specific molecular dynamics while providing femtosecond resolution. Yet, time-resolved experiments are either blind to neutral fragments or limited by the spectral bandwidth of FEL pulses.
View Article and Find Full Text PDFThe reaction of aromatic ring-substituted isoselenocyanates with 2-thiopheacetic and 4-pyridinecarboxylic acid hydrazides yielded selenosemicarbazides which were further converted into previously unknown 1,2,4-triazole-3-selones and 3,3'-di(4H-1, 2,4-triazolyl)diselenides. The structures of the obtained compounds were studied by NMR spectroscopy, IR spectroscopy, and high-resolution mass spectroscopy (HR-MS). The bactericidal and fungicidal activity of some obtained compounds was evaluated in molecular modeling studies such as docking and simulation studies.
View Article and Find Full Text PDFMetal contamination coupled with aridity is a major challenge for remediation of abiotic stressed soils throughout the world. Both biochar and beneficial bacteria showed a significant effect in bioremediation; however, their conjugate study needs more exploration. Two rhizobacteria strains sp.
View Article and Find Full Text PDFLaser-driven recollision physics is typically accessible only at field intensities high enough for tunnel ionization. Using an extreme ultraviolet pulse for ionization and a near-infrared (NIR) pulse for driving of the electron wave packet lifts this limitation. This allows us to study recollisions for a broad range of NIR intensities with transient absorption spectroscopy, making use of the reconstruction of the time-dependent dipole moment.
View Article and Find Full Text PDFThe present study of phytomitigation potential and adaptive physiological and biochemical responses of helophyte Typha latifolia L. growing in water bodies at different distances from the century-old copper smelter (JSC "Karabashmed" Chelyabinsk Region, Russia) was conducted for the first time. This enterprise is one of the most dominant sources of multi-metal contamination for water and land ecosystems.
View Article and Find Full Text PDFWe report the measurement of the photoelectron angular distribution of two-photon single-ionization near the 2p^{2} ^{1}D^{e} double-excitation resonance in helium, benchmarking the fundamental nonlinear interaction of two photons with two correlated electrons. This observation is enabled by the unique combination of intense extreme ultraviolet pulses, delivered at the high-repetition-rate free-electron laser in Hamburg (FLASH), ionizing a jet of cryogenically cooled helium atoms in a reaction microscope. The spectral structure of the intense self-amplified spontaneous emission free-electron laser pulses has been resolved on a single-shot level to allow for post selection of pulses, leading to an enhanced spectral resolution, and introducing a new experimental method.
View Article and Find Full Text PDFMetal tolerant plant growth-promoting (PGP) rhizobacteria are promising for enhancing plant productivity under copper (Cu) stress. Present pot scale experiment was conducted on L. to check the efficiency of rhizobacteria isolated from the rhizosphere of L.
View Article and Find Full Text PDFMolecules
September 2022
A practical method for the synthesis of 2-selenoxo-1,2,3,4-tetrahydro-4-quinazolinone was reported. The latter compounds were found to undergo facile oxidation with HO into corresponding diselenides. Novel organoselenium derivatives were characterized by the H, Se, and C NMR spectroscopies, high-resolution electrospray ionization mass spectrometry, IR, elemental analyses (C, H, N), and X-ray diffraction analysis for several of them.
View Article and Find Full Text PDFJ Inorg Biochem
June 2022
New complex compounds (I) - (IV) were synthesized by the reaction of 1-(2-fluorofluorophenyl) -1,4-dihydro-5H-tetrazole-5-thione (HL), 1-(2-methylphenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL) and 1-(2-chlorochlorophenyl)-1,4-dihydro-5H-tetrazole-5-thione (HL) with cadmium chloride. By X-ray diffraction analysis, molecular and crystal structures of complexes (I), (II), (III) and (IV) are determined. (CIF files CCDC № 2,003,797 (I), 1,993,454 (II), 2,151,359 (III), 2,098,997 (IV)).
View Article and Find Full Text PDFWe performed a time-resolved spectroscopy experiment on the dissociation of oxygen molecules after the interaction with intense extreme-ultraviolet (XUV) light from the free-electron laser in Hamburg at Deutsches Elektronen-Synchrotron. Using an XUV-pump/XUV-probe transient-absorption geometry with a split-and-delay unit, we observe the onset of electronic transitions in the O cation near 50 eV photon energy, marking the end of the progression from a molecule to two isolated atoms. We observe two different time scales of 290 ± 53 and 180 ± 76 fs for the emergence of different ionic transitions, indicating different dissociation pathways taken by the departing oxygen atoms.
View Article and Find Full Text PDFCorrection for 'Novel cationic 1,2,4-selenadiazoles: synthesis addition of 2-pyridylselenyl halides to unactivated nitriles, structures and four-center Se⋯N contacts' by Victor N. Khrustalev , , 2021, , 10689-10691, DOI: 10.1039/D1DT01322J.
View Article and Find Full Text PDF2-Pyridylselenyl halides undergo facile coupling with a triple CN bond of unactivated nitriles. Unprecedented heterocyclization allowed the preparation of a novel class of cationic 1,2,4-selenadiazoles in remarkably high yields. Cationic 1,2,4-selenadiazoles form supramolecular dimers in the crystal via SeN chalcogen bonding, which was studied theoretically.
View Article and Find Full Text PDFThe emergence of ultra-intense extreme-ultraviolet (XUV) and X-ray free-electron lasers (FELs) has opened the door for the experimental realization of non-linear XUV and X-ray spectroscopy techniques. Here we demonstrate an experimental setup for an all-XUV transient absorption spectroscopy method for gas-phase targets at the FEL. The setup combines a high spectral resolving power of E/ΔE ≈ 1500 with sub-femtosecond interferometric resolution, and covers a broad XUV photon-energy range between approximately 20 and 110 eV.
View Article and Find Full Text PDFHigh-intensity ultrashort pulses at extreme ultraviolet (XUV) and x-ray photon energies, delivered by state-of-the-art free-electron lasers (FELs), are revolutionizing the field of ultrafast spectroscopy. For crossing the next frontiers of research, precise, reliable and practical photonic tools for the spectro-temporal characterization of the pulses are becoming steadily more important. Here, we experimentally demonstrate a technique for the direct measurement of the frequency chirp of extreme-ultraviolet free-electron laser pulses based on fundamental nonlinear optics.
View Article and Find Full Text PDFThe present investigation is the first in situ comparative study for the identification of Ni and Cu accumulation strategies involved in Odontarrhena obovata (syn. Alyssum obovatum (C.A.
View Article and Find Full Text PDFWe report on the experimental observation of a strong-field dressing of an autoionizing two-electron state in helium with intense extreme-ultraviolet laser pulses from a free-electron laser. The asymmetric Fano line shape of this transition is spectrally resolved, and we observe modifications of the resonance asymmetry structure for increasing free-electron-laser pulse energy on the order of few tens of Microjoules. A quantum-mechanical calculation of the time-dependent dipole response of this autoionizing state, driven by classical extreme-ultraviolet (XUV) electric fields, evidences strong-field-induced energy and phase shifts of the doubly excited state, which are extracted from the Fano line-shape asymmetry.
View Article and Find Full Text PDFWe demonstrate time-resolved nonlinear extreme-ultraviolet absorption spectroscopy on multiply charged ions, here applied to the doubly charged neon ion, driven by a phase-locked sequence of two intense free-electron laser pulses. Absorption signatures of resonance lines due to 2p-3d bound-bound transitions between the spin-orbit multiplets ^{3}P_{0,1,2} and ^{3}D_{1,2,3} of the transiently produced doubly charged Ne^{2+} ion are revealed, with time-dependent spectral changes over a time-delay range of (2.4±0.
View Article and Find Full Text PDFAccessing attosecond (as) dynamics directly in the time domain has been achieved by several pioneering experiments over the course of the last decade. Extreme ultraviolet (XUV) group delays and, later, ionization time delays on the order of a few attoseconds have been extracted by photoemission or high-harmonic spectroscopy. Here, we present and benchmark an approach based on attosecond transient absorption spectroscopy to quantify deliberately induced delays by employing resonant photoexcitation of three XUV transitions with a precision of less than 5 as.
View Article and Find Full Text PDFMeasuring bound-state quantum dynamics, excited and driven by strong fields, is achievable by time-resolved absorption spectroscopy. Here, a vacuum beamline for spectroscopy in the attosecond temporal and extreme ultraviolet (XUV) spectral range is presented, which is a tool for observing and controlling nonequilibrium electron dynamics. In particular, we introduce a technique to record an XUV absorption signal and the corresponding reference simultaneously, which greatly improves the signal quality.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
May 2019
1-Pyridine-2-selenenyl dibromide, CHNSeBr, , is a product of the bromination of bis-(pyridin-2-yl) diselenide in methyl-ene chloride recrystallization from methanol. Compound is essentially zwitterionic: the negative charge resides on the SeBr moiety and the positive charge is delocalized over the pyridinium fragment. The C-Se distance of 1.
View Article and Find Full Text PDFIn the present study, two fresh water plant species Egeria densa (Planch.) Casp. and Ceratophyllum demersum L.
View Article and Find Full Text PDFActa Crystallogr E Crystallogr Commun
December 2016
The title compound, CHClNOSe, is the product of the reaction of sulfuryl chloride and 2-selanyl-1-pyridine 1-oxide in di-chloro-methane. The mol-ecule has an almost planar geometry (r.m.
View Article and Find Full Text PDF