RNA degradation plays important roles for maintaining temporal control and fidelity of gene expression, as well as processing of transcripts. In Saccharomyces cerevisiae the RNA exosome is a major 3'-to-5' exoribonuclease and also has an endonuclease domain of unknown function. Here we report a physiological role for the exosome in response to a stimulus.
View Article and Find Full Text PDFIn eukaryotes, the exosome plays a central role in RNA maturation, turnover, and quality control. In Saccharomyces cerevisiae, the core exosome is composed of nine catalytically inactive subunits constituting a ring structure and the active nuclease Rrp44, also known as Dis3. Rrp44 is a member of the ribonuclease II superfamily of exoribonucleases which include RNase R, Dis3L1 and Dis3L2.
View Article and Find Full Text PDFThe exosome consists of a core of ten essential proteins that includes the ribonuclease Rrp44p and is present in both the cytoplasm and nucleus of eukaryotic cells. The cytoplasmic exosome has been extensively characterized in the budding yeast Saccharomyces cerevisiae and some characterization of its metazoan counterpart indicates that most functional aspects are conserved. These studies have implicated the cytoplasmic exosome in the turnover of normal cellular mRNAs, as well as several mRNA surveillance pathways.
View Article and Find Full Text PDFThe authors analyse the eukaryotic exosome structure, published in EMBO , in light of the known archaeal and prokaryotic exosomes, and discuss its striking flexibility and the conservation of the RNA channelling mechanism.
View Article and Find Full Text PDFThe exosome consists of a core often essential proteins that includes the ribonuclease Rrp44p and is present in both the cytoplasm and nucleus of eukaryotic cells. The cytoplasmic exosome has been extensively characterized in the budding yeast Saccharomyces cerevisiae and some characterization of its metazoan counterpart indicates that most functional aspects are conserved. These studies have implicated the cytoplasmic exosome in the turnover ofnormal cellularmRNAs, as well as several mRNA surveillance pathways.
View Article and Find Full Text PDFThe eukaryotic exosome is a ten-subunit 3' exoribonucleolytic complex responsible for many RNA-processing and RNA-degradation reactions. How the exosome accomplishes this is unknown. Rrp44 (also known as Dis3), a member of the RNase II family of enzymes, is the catalytic subunit of the exosome.
View Article and Find Full Text PDF