Indistinguishable single photons in the telecom-bandwidth of optical fibers are indispensable for long-distance quantum communication. Solid-state single photon emitters have achieved excellent performance in key benchmarks, however, the demonstration of indistinguishability at room-temperature remains a major challenge. Here, we report room-temperature photon indistinguishability at telecom wavelengths from individual nanotube defects in a fiber-based microcavity operated in the regime of incoherent good cavity-coupling.
View Article and Find Full Text PDFWe study experimentally and theoretically the hybridization among intralayer and interlayer moiré excitons in a MoSe_{2}/WS_{2} heterostructure with antiparallel alignment. Using a dual-gate device and cryogenic white light reflectance and narrow-band laser modulation spectroscopy, we subject the moiré excitons in the MoSe_{2}/WS_{2} heterostack to a perpendicular electric field, monitor the field-induced dispersion and hybridization of intralayer and interlayer moiré exciton states, and induce a crossover from type I to type II band alignment. Moreover, we employ perpendicular magnetic fields to map out the dependence of the corresponding exciton Landé g factors on the electric field.
View Article and Find Full Text PDFThe diffusive epidemic process is a paradigmatic example of an absorbing state phase transition in which healthy and infected individuals spread with different diffusion constants. Using stochastic activity spreading simulations in combination with finite-size scaling analyses we reveal two qualitatively different processes that characterize the critical dynamics: subdiffusive propagation of infection clusters and diffusive fluctuations in the healthy population. This suggests the presence of a strong-coupling regime and sheds new light on a long-standing debate about the theoretical classification of the system.
View Article and Find Full Text PDF