Introduction: To better elucidate the impact of cooperative learning outside the classroom, a student-initiated research project was conducted to explore the effects of participating in peer-led study groups (PLSGs) on student examination scores and perceptions.
Methods: First-year pharmacy students were given the opportunity to participate in weekly PLSGs for a pharmacogenomics course during spring 2016 and spring 2017. Student exam performance was stratified by those who attended vs.
Cobra venom cardiotoxins (CVCs) can translocate to mitochondria to promote apoptosis by eliciting mitochondrial dysfunction. However, the molecular mechanism(s) by which CVCs are selectively targeted to the mitochondrion to disrupt mitochondrial function remains to be elucidated. By studying cardiotoxin from cobra (cardiotoxin VII4), a basic three-fingered S-type cardiotoxin, we hypothesized that cardiotoxin VII4 binds to cardiolipin (CL) in mitochondria to alter mitochondrial structure/function and promote neurotoxicity.
View Article and Find Full Text PDFCobra venom cytotoxins are basic three-fingered, amphipathic, non-enzymatic proteins that constitute a major fraction of cobra venom. While cytotoxins cause mitochondrial dysfunction in different cell types, the mechanisms by which cytotoxins bind to mitochondria remain unknown. We analyzed the abilities of CTI and CTII, S-type and P-type cytotoxins from Naja naja oxiana respectively, to associate with isolated mitochondrial fractions or with model membranes that simulate the mitochondrial lipid environment by using a myriad of biophysical techniques.
View Article and Find Full Text PDFRattlesnake venom can differ in composition and in metalloproteinase-associated activities. The molecular basis for this intra-species variation in Crotalus scutulatus scutulatus (Mojave rattlesnake) remains an enigma. To understand the molecular basis for intra-species variation of metalloproteinase-associated activities, we modeled the three-dimensional structures of four metalloproteinases based on the amino acid sequence of four variations of the proteinase domain of the C.
View Article and Find Full Text PDF