Publications by authors named "Boris Zakharov"

The crystal structure of lithium xanthinate hydrate was studied by single crystal X-ray diffraction and Raman spectroscopy on cooling to 100 K and under compression to 5.3 GPa. A phase transition at ∼4 GPa is observed.

View Article and Find Full Text PDF

A new photoactive cobalt coordination compound, [Co(NH)NO]BrNO (I), was obtained. Its crystal structure was shown to be isostructural with previously known [Co(NH)NO]ClNO (II) for which linkage isomerization accompanied with mechanical response of the crystal has been already reported. Single crystals of I are transformed into nitrito isomer [Co(NH)ONO]BrNO (III) on irradiation with blue light (λ = 465 nm) without being destroyed.

View Article and Find Full Text PDF

Phase transitions in Rochelle salt [sodium potassium L(+)-tartrate tetrahydrate] are revisited in a single-crystal X-ray diffraction multi-temperature study on cooling from 308 to 100 K across the high-temperature paraelectric (PE) ↔ ferroelectric ↔ low-temperature PE phase transition points. The results of structure refinement using three different models (a harmonic with and without disorder, and an anharmonic) were compared. The temperature dependencies of anisotropic displacement parameters (ADPs) and U, which can be calculated directly from ADPs, for the low-temperature PE phase indicate clearly the dynamic nature of disorder of the K1 atoms.

View Article and Find Full Text PDF

The title radical R⋅, synthesized by reduction of the corresponding cation R, is thermally stable up to ~380 K in the crystalline state under anaerobic conditions. With SQUID magnetometry, single-crystal and powder XRD, solid-state EPR and TG-DSC, reversible spin-Peierls transition between diamagnetic and paramagnetic states featuring ~10 K hysteretic loop is observed for R⋅ in the temperature range ~310-325 K; ΔH=~2.03 kJ mol and ΔS=~6.

View Article and Find Full Text PDF

The crystal structure of potassium guaninate hydrate, K·CHNO·HO, was studied in the pressure range of 1 atm to 7.3 GPa by single-crystal diffraction using synchrotron radiation and a laboratory X-ray diffraction source. Structural strain was compared to that of the same salt hydrate on cooling, and in 2Na·CHNO·7HO under hydrostatic compression and on cooling.

View Article and Find Full Text PDF

Two novel bismuth succinate hydrates, namely, poly[[diaqua(μ-butane-1,4-dicarboxylato)hemi(μ-butane-1,4-dicarboxylato)bismuth] monohydrate], {[Bi(CHO)(HO)]·HO} (1), and poly[[μ-aqua-aqua(μ-butane-1,4-dicarboxylato)(μ-butane-1,4-dicarboxylato)-μ-oxido-dibismuth] monohydrate], {[Bi(CHO)O(HO)]·HO} (2), have been synthesized. Their crystal structures were determined by single-crystal X-ray diffraction and the compounds were characterized by IR and Raman spectroscopy, powder X-ray diffraction and thermal analysis. The crystal structure analysis revealed that the compounds are coordination polymers, with 1 having a two-dimensional layered structure and 2 displaying a three-dimensional (3D) framework.

View Article and Find Full Text PDF

Monohydrate sulfate kieserites ( SO·HO) and their solid solutions are essential constituents on the surface of Mars and most likely also on Galilean icy moons in our solar system. Phase stabilities of end-member representatives ( = Mg, Fe, Co, Ni) have been examined crystallographically using single-crystal X-ray diffraction at 1 bar and temperatures down to 15 K, by means of applying open He cryojet techniques at in-house laboratory instrumentation. All four representative phases show a comparable, highly anisotropic thermal expansion behavior with a remarkable negative thermal expansion along the monoclinic axis and a pronounced anisotropic expansion perpendicular to it.

View Article and Find Full Text PDF

The variation of charge density of two-electron multicentre bonding (pancake bonding) between semi-quinone radicals with pressure and temperature was studied on a salt of 5,6-di-chloro-2,3-di-cyano-semi-quinone radical anion (DDQ) with 4-cyano--methyl-pyridinium cation (4-CN) using the Transferable Aspheric Atom Model (TAAM) refinement. The pancake-bonded radical dimers are stacked by non-bonding π-interactions. With rising pressure, the covalent character of interactions between radicals increases, and above 2.

View Article and Find Full Text PDF
Article Synopsis
  • Scientists studied a special material called glycinium phosphite to see how it changes when heated or cooled, using two different types of X-ray machines.*
  • They found that at around -48°C (225 K), the material changes from a non-magnetic state (paraelectric) to a magnetic state (ferroelectric).*
  • The results from one machine (synchrotron) were different from the other (laboratory), showing strange volume changes and suggesting that radiation from the synchrotron might be affecting the experiment.*
View Article and Find Full Text PDF

The effects of temperature (100-370 K) and pressure (0-6 GPa) on the non-localized two-electron multicentric covalent bonds (`pancake bonding') in closely bound radical dimers were studied using single-crystal X-ray diffraction on a 4-cyano-N-methylpyridinium salt of 5,6-dichloro-2,3-dicyanosemiquinone radical anion (DDQ) as the sample compound. On cooling, the anisotropic structural compression was accompanied by continuous changes in molecular stacking; the discontinuities in the changes in volume and b and c cell parameters suggest that a phase transition occurs between 210 and 240 K. At a pressure of 2.

View Article and Find Full Text PDF

Protein/ice interactions are investigated by a novel method based on measuring the characteristic features of X-ray diffraction (XRD) patterns of hexagonal ice (Ih). Aqueous solutions of four proteins and other solutes are studied using high-resolution synchrotron XRD. Two pharmaceutical proteins, recombinant human albumin and monoclonal antibody (both at 100 mg/mL), have a pronounced effect on the properties of ice crystals, reducing the size of the Ih crystalline domains and increasing the microstrain.

View Article and Find Full Text PDF

The quality of structural models for 1,2,4,5-tetra-bromo-benzene (TBB), CHBr, based on data collected from a single crystal in a diamond anvil cell at 0.4 GPa using two different diffractometers belonging to different generations have been compared, together with the effects of applying different data-processing strategies.

View Article and Find Full Text PDF

Photomechanically reconfigurable elastic single crystals are the key elements for contactless, timely controllable and spatially resolved transduction of light into work from the nanoscale to the macroscale. The deformation in such single-crystal actuators is observed and usually attributed to anisotropy in their structure induced by the external stimulus. Yet, the actual intrinsic and external factors that affect the mechanical response remain poorly understood, and the lack of rigorous models stands as the main impediment towards benchmarking of these materials against each other and with much better developed soft actuators based on polymers, liquid crystals and elastomers.

View Article and Find Full Text PDF

The thermosalient effect (crystal jumping on heating) attracts much attention as both an intriguing academic phenomenon and in relation to its potential for the development of molecular actuators but its mechanism remains unclear. 1,2,4,5-Tetrabromobenzene (TBB) is one of the most extensively studied thermosalient compounds that has been shown previously to undergo a phase transition on heating, accompanied by crystal jumping and cracking. The difference in the crystal structures and intermolecular interaction energies of the low- and high-temperature phases is, however, too small to account for the large stress that arises over the course of the transformation.

View Article and Find Full Text PDF

The MH(AO) acid salts (M = Cs, Rb, K, Na, Li, NH; A = S, Se, As, P) exhibit ferroelectric properties. The solid acids have low conductivity values and are of interest with regard to their thermal properties and proton conductivity. The crystal structure of caesium dihydrogen orthophosphate monohydrogen orthophosphate dihydrate, Cs(HPO)·2HO, has been solved.

View Article and Find Full Text PDF

For martensitic transformations the macroscopic crystal strain is directly related to the corresponding structural rearrangement at the microscopic level. optical microscopy observations of the interface migration and the change in crystal shape during a displacive single crystal to single crystal transformation can contribute significantly to understanding the mechanism of the process at the atomic scale. This is illustrated for the dehydration of samarium oxalate decahydrate in a study combining optical microscopy and single-crystal X-ray diffraction.

View Article and Find Full Text PDF

Ice formation and recrystallization is a key phenomenon in freezing and freeze-drying of pharmaceuticals and biopharmaceuticals. In this investigation, high-resolution synchrotron X-ray diffraction is used to quantify the extent of disorder of ice crystals in binary aqueous solutions of a cryoprotectant (sorbitol) and a protein, bovine serum albumin. Ice crystals in more dilute (10 wt%) solutions have lower level of microstrain and larger crystal domain size than these in more concentrated (40 wt%) solutions.

View Article and Find Full Text PDF

In the present case study of tolazamide we illustrate how many seemingly contradictory results that have been obtained from experimental observations and theoretical calculations can finally start forming a consistent picture: a "puzzle put together". For many years, tolazamide was considered to have no polymorphs. This made this drug substance unique among the large family of sulfonylureas, which was known to be significantly more prone to polymorphism than many other organic compounds.

View Article and Find Full Text PDF

In order to investigate the possibility of salt formation in the L-Arg-H3PO3-H2O system, single crystals of L-argininium phosphite, C6H15N4O2(+)·H2PO3(-), were prepared by evaporation of an aqueous solution containing equimolar quantities of L-arginine and phosphorous acid. The asymmetric unit contains one L-argininium(+) cation and one phosphite [HPO2(OH)](-) anion. The phosphite anions form chains parallel to [010] by O-H.

View Article and Find Full Text PDF

A series of new quaternary 1,4-diazabicyclo[2.2.2]octane derivatives was synthesized and evaluated for activity against several strains of both Gram positive and Gram negative bacteria and one strain of fungus under different inoculum size.

View Article and Find Full Text PDF

Crystals on the move: If they are subjected to a strong light stimulus, crystals of the cobalt coordination compound [Co(NH3)5(NO2)]Cl(NO3) undergo sudden jumps and leap over distances 10(2)-10(5) times their own size to release the strain that accumulates in their interior. The first quantitative kinematic analysis of this phenomenon is reported. The observed effect could be employed for actuation on the macroscopic scale.

View Article and Find Full Text PDF

A single-crystal to single-crystal transition in DL-alaninium semi-oxalate monohydrate at a pressure between 1.5 and 2.4 GPa was studied by single-crystal X-ray diffraction and Raman spectroscopy.

View Article and Find Full Text PDF

L-serinium semi-maleate, (I), and DL-serinium semi-maleate, (II), both C3H8NO3(+)·C4H3O4(-), provide the first example of chiral and racemic anhydrous serine salts with the same organic anion. A comparison of their crystal structures with each other, with the structures of the pure components (L-serine polymorphs, DL-serine and maleic acid) and with other amino acid maleates is important for understanding the formation of the crystal structures, their response to variations in temperature and pressure, and structure-property relationships. As in other known crystal structures of amino acid maleates, there are no direct links between the semi-maleate anions in the two new structures.

View Article and Find Full Text PDF

This study centers on the use of inelastic neutron scattering as an alternative tool for physical characterization of solid pharmaceutical drugs. On the basis of such approach, relaxation processes in the pharmaceutical compound phenacetin (p-ethoxyacetanilide, C(10)H(13)NO(2)) were evidenced on heating between 2 and 300 K. By evaluating the mean-square displacement obtained from the elastic fixed window approach, using the neutron backscattering technique, a crossover of the molecular fluctuations between harmonic and nonharmonic dynamical regimes around 75 K was observed.

View Article and Find Full Text PDF

The occurrence of a first-order reversible phase transition in glycine-glutaric acid co-crystals at 220-230 K has been confirmed by three different techniques - single-crystal X-ray diffraction, polarized Raman spectroscopy and differential scanning calorimetry. The most interesting feature of this phase transition is that every second glutaric acid molecule changes its conformation, and this fact results in the space-group symmetry change from P2(1)/c to P1. The topology of the hydrogen-bonded motifs remains almost the same and hydrogen bonds do not switch to other atoms, although the hydrogen bond lengths do change and some of the bonds become inequivalent.

View Article and Find Full Text PDF