Publications by authors named "Boris Yang"

The immune system coordinates the response to cardiac injury and controls regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Adult mice and humans lack the ability to fully recover while adult zebrafish spontaneously regenerate after heart injury. Here we profile the inflammatory response to heart cryoinjury in zebrafish and coronary artery ligation in mouse using single cell transcriptomics.

View Article and Find Full Text PDF

The immune system coordinates the response to cardiac injury and is known to control regenerative and fibrotic scar outcomes in the heart and subsequent chronic low-grade inflammation associated with heart failure. Here we profiled the inflammatory response to heart injury using single cell transcriptomics to compare and contrast two experimental models with disparate outcomes. We used adult mice, which like humans lack the ability to fully recover and zebrafish which spontaneously regenerate after heart injury.

View Article and Find Full Text PDF

The pancreatic islets are composed of discrete hormone-producing cells that orchestrate systemic glucose homeostasis. Here we identify subsets of beta cells using a single-cell transcriptomic approach. One subset of beta cells marked by high CD63 expression is enriched for the expression of mitochondrial metabolism genes and exhibits higher mitochondrial respiration compared with CD63 beta cells.

View Article and Find Full Text PDF

Background: Following acute myocardial infarction (MI), irreversible damage to the myocardium can only be reduced by shortening the duration between symptom onset and revascularization. While systemic hypothermia has shown promising results in slowing pre-revascularization myocardial damage, it is resource intensive and not conducive to prehospital initiation. We hypothesized that topical neck cooling (NC), an easily implemented therapy for en route transfer to definitive therapy, could similarly attenuate myocardial ischemia-reperfusion injury (IRI).

View Article and Find Full Text PDF

Background We previously demonstrated that ischemically injured cardiomyocytes release cell-free DNA and HMGB1 (high mobility group box 1 protein) into circulation during reperfusion, activating proinflammatory responses and ultimately exacerbating reperfusion injury. We hypothesize that cell-free DNA and HMGB1 mediate myocardial ischemia-reperfusion injury by stimulating plasmacytoid dendritic cells (pDCs) to secrete type I interferon (IFN-I). Methods and Results C57BL/6 and interferon alpha receptor-1 knockout mice underwent 40 minutes of left coronary artery occlusion followed by 60 minutes of reperfusion (40'/60' IR) before infarct size was evaluated by 2,3,5-Triphenyltetrazolium chloride-Blue staining.

View Article and Find Full Text PDF