A magnetic field modifies optical properties and provides valley splitting in a molybdenum disulfide (MoS) monolayer. Here we demonstrate a scalable approach to the epitaxial synthesis of MoS monolayer on a magnetic graphene/Co system. Using spin- and angle-resolved photoemission spectroscopy we observe a magnetic proximity effect that causes a 20 meV spin-splitting at the Γ̅ point and canting of spins at the K̅ point in the valence band toward the in-plane direction of cobalt magnetization.
View Article and Find Full Text PDFLateral heterojunctions of atomically precise graphene nanoribbons (GNRs) hold promise for applications in nanotechnology, yet their charge transport and most of the spectroscopic properties have not been investigated. Here, we synthesize a monolayer of multiple aligned heterojunctions consisting of quasi-metallic and wide-bandgap GNRs, and report characterization by scanning tunneling microscopy, angle-resolved photoemission, Raman spectroscopy, and charge transport. Comprehensive transport measurements as a function of bias and gate voltages, channel length, and temperature reveal that charge transport is dictated by tunneling through the potential barriers formed by wide-bandgap GNR segments.
View Article and Find Full Text PDFCluster superlattice membranes consist of a two-dimensional hexagonal lattice of similar-sized nanoclusters sandwiched between single-crystal graphene and an amorphous carbon matrix. The fabrication process involves three main steps, the templated self-organization of a metal cluster superlattice on epitaxial graphene on Ir(111), conformal embedding in an amorphous carbon matrix, and subsequent lift-off from the Ir(111) substrate. The mechanical stability provided by the carbon-graphene matrix makes the membrane stable as a free-standing material and enables transfer to other substrates.
View Article and Find Full Text PDFWe present laser-induced photothermal synthesis of atomically precise graphene nanoribbons (GNRs). The kinetics of photothermal bottom-up GNR growth are unravelled by Raman spectroscopy carried out in ultrahigh vacuum. We photothermally drive the reaction steps by short periods of laser irradiation and subsequently analyze the Raman spectra of the reactants in the irradiated area.
View Article and Find Full Text PDFWe show that Cs intercalated bilayer graphene acts as a substrate for the growth of a strained Cs film hosting quantum well states with high electronic quality. The Cs film grows in an fcc phase with a substantially reduced lattice constant of 4.9 Å corresponding to a compressive strain of 11% compared to bulk Cs.
View Article and Find Full Text PDFFor quasi-freestanding 2H-TaS in monolayer thickness grown by molecular beam epitaxy on graphene on Ir(111), we find unambiguous evidence for a charge density wave close to a 3 × 3 periodicity. Using scanning tunneling spectroscopy, we determine the magnitude of the partial charge density wave gap. Angle-resolved photoemission spectroscopy, complemented by scanning tunneling spectroscopy for the unoccupied states, makes a tight-binding fit for the band structure of the TaS monolayer possible.
View Article and Find Full Text PDFBy enhancing the photoluminescence from aligned seven-atom wide armchair-edge graphene nanoribbons using plasmonic nanoantennas, we are able to observe blinking of the emission. The on- and off-times of the blinking follow power law statistics. In time-resolved spectra, we observe spectral diffusion.
View Article and Find Full Text PDFThe opening of a band gap in graphene nanoribbons induces novel optical and electronic properties, strongly enhancing their application potential in nanoscale devices. Knowledge of the optical excitations and associated relaxation dynamics are essential for developing and optimizing device designs and functionality. Here we report on the optical excitations and associated relaxation dynamics in surface aligned 7-atom wide armchair graphene nanoribbons as seen by time-resolved spontaneous Stokes and anti-Stokes Raman scattering spectroscopy.
View Article and Find Full Text PDFWe employ ultra-high vacuum (UHV) Raman spectroscopy in tandem with angle-resolved photoemission (ARPES) to investigate the doping-dependent Raman spectrum of epitaxial graphene on Ir(111). The evolution of Raman spectra from pristine to heavily Cs doped graphene up to a carrier concentration of 4.4 × 10 cm is investigated.
View Article and Find Full Text PDFWe report on the experimental demonstration and electrical characterization of N = 7 armchair graphene nanoribbon (7-AGNR) field effect transistors. The back-gated transistors are fabricated from atomically precise and highly aligned 7-AGNRs, synthesized with a bottom-up approach. The large area transfer process holds the promise of scalable device fabrication with atomically precise nanoribbons.
View Article and Find Full Text PDFNovel nitrogen-doped carbon hybrid materials consisting of multiwalled nanotubes and porous graphitic layers have been produced by chemical vapor deposition over magnesium-oxide-supported metal catalysts. CN nanotubes were grown on Co/Mo, Ni/Mo, or Fe/Mo alloy nanoparticles, and MgO grains served as a template for the porous carbon. The simultaneous formation of morphologically different carbon structures was due to the slow activation of catalysts for the nanotube growth in a carbon-containing gas environment.
View Article and Find Full Text PDFSingle-walled carbon nanotubes (SWCNTs) possessing a confined inner space protected by chemically resistant shells are promising for delivery, storage, and desorption of various compounds, as well as carrying out specific reactions. Here, we show that SWCNTs interact with molten mercury dichloride (HgCl) and guide its transformation into dimercury dichloride (HgCl) in the cavity. The chemical state of host SWCNTs remains almost unchanged except for a small p-doping from the guest HgCl nanocrystals.
View Article and Find Full Text PDFRegardless of the widely accepted opinion that there is no Raman signal from single-layer graphene when it is strongly bonded to a metal surface, we present Raman spectra of a graphene monolayer on Ni(111) and Co(0001) substrates. The high binding energy of carbon to these surfaces allows formation of lattice-matched (1 × 1) structures where graphene is significantly stretched. This is reflected in a record-breaking shift of the Raman G band by more than 100 cm relative to the case of freestanding graphene.
View Article and Find Full Text PDFEmbedding foreign atoms or molecules in graphene has become the key approach in its functionalization and is intensively used for tuning its structural and electronic properties. Here, we present an efficient method based on chemical vapor deposition for large scale growth of boron-doped graphene (B-graphene) on Ni(111) and Co(0001) substrates using carborane molecules as the precursor. It is shown that up to 19 at.
View Article and Find Full Text PDF