Publications by authors named "Boris Touvykine"

Background: Stroke results in loss of upper motor neuron control over voluntary movements and emergence of abnormal synergies. Presently, it is unclear to what extent poststroke recovery reflects true recovery (restitution), compensation, or some combination of these processes. Here, we investigated this question using behavioral and kinematic analyses of skilled reaching in rats subjected to severe stroke that affected both the forelimb motor cortex and dorsolateral striatum.

View Article and Find Full Text PDF

Lesion size and location affect the magnitude of impairment and recovery following stroke, but the precise relationship between these variables and functional outcome is unknown. Herein, we systematically varied the size of strokes in motor cortex and surrounding regions to assess effects on impairment and recovery of function. Female Sprague Dawley rats ( = 64) were evaluated for skilled reaching, spontaneous limb use, and limb placement over a 7 week period after stroke.

View Article and Find Full Text PDF

In rats, forelimb movements are evoked from two cortical regions, the caudal and rostral forelimb areas (CFA and RFA, respectively). These areas are densely interconnected and RFA induces complex and powerful modulations of CFA outputs. CFA and RFA also have interhemispheric connections, and these areas from both hemispheres send projections to common targets along the motor axis, providing multiple potential sites of interactions for movement production.

View Article and Find Full Text PDF

Recovery of hand function following lesions in the primary motor cortex (M1) is associated with a reorganization of premotor areas in the ipsilesional hemisphere, and this reorganization depends on the size of the lesion. It is not clear how lesion size affects motor representations in the contralesional hemisphere and how the effects in the 2 hemispheres compare. Our goal was to study how lesion size affects motor representations in the ipsilesional and contralesional hemispheres.

View Article and Find Full Text PDF

The last decade of neuroscience research has revealed that the adult brain can undergo substantial reorganization following injury. Plasticity after stroke has traditionally been perceived as adaptive and supporting recovery, but recent studies have suggested that some plasticity may also be detrimental. In particular, increased activity in the unaffected (contralesional) hemisphere has been proposed to contribute to motor deficits of the paretic hand in some patients.

View Article and Find Full Text PDF

A rapidly growing number of studies using inhibition of the contralesional hemisphere after stroke are reporting improvement in motor performance of the paretic hand. These studies have used different treatment onset time, duration and non-invasive methods of inhibition. Whereas these results are encouraging, several questions regarding the mechanisms of inhibition and the most effective treatment parameters are currently unanswered.

View Article and Find Full Text PDF