Publications by authors named "Boris Sukhov"

Novel copper-containing bionanocomposites based on the natural raw arabinogalactan have been obtained as universal effective agents against phytopathogen and development stimulants of agricultural plants. Thus, the use of such nanosystems offers a solution to the tasks set in biotechnology while maintaining high environmental standards using non-toxic, biocompatible, and biodegradable natural biopolymers. The physicochemical characteristics of nanocomposites were determined using a number of analytical methods (elemental analysis, transmission electron microscopy and spectroscopic parameters of electron paramagnetic resonance, UV-visible, etc.

View Article and Find Full Text PDF

An antimicrobial polyacrylic silver salt (freshly prepared, stored for one year and model-aged) was studied by physical-chemical techniques for nanoparticle detection. In all cases, this salt represents a composite of radical-enriched macromolecules and silver(0) nanoparticles. As time passed, the initial small spherical nanoparticles were converted into larger non-spherical silver nanoparticles.

View Article and Find Full Text PDF

Water-soluble, stable nanoparticles of elemental sulphur with a size of 9-52 nm have been synthesised using the stabilising potential of starch. Sulphide anions were used as sulphur precursors that were generated earlier from the bulk powder sulphur in the base-reduction system NaOH-N H ·H O followed by their oxidation with molecular oxygen to element sulphur atoms. Using a set of modern spectral and microscopic methods (XRD, optical spectroscopy, DLS, TEM), the phase state, elemental composition of the nanocomposites and their nanomorphological characteristics have been investigated.

View Article and Find Full Text PDF

We studied the effects of new chemically synthesized selenium (Se) nanocomposites (NCs) based on natural polysaccharide matrices arabinogalactan (AG), starch (ST), and kappa-carrageenan (CAR) on the viability of phytopathogen , rhizospheric bacteria, and potato productivity in the field experiment. Using transmission electron microscopy (TEM), it was shown that the nanocomposites contained nanoparticles varying from 20 to 180 nm in size depending on the type of NC. All three investigated NCs had a fungicidal effect even at the lowest tested concentrations of 50 µg/mL for Se/AG NC (3 µg/mL Se), 35 µg/mL for Se/ST NC (0.

View Article and Find Full Text PDF

The paper presents a study of the effect of chemically synthesized selenium nanocomposites (Se NCs) in natural polymer matrices arabinogalactan (AG) and starch (ST) on the viability of the potato ring rot pathogen (), potato plants in vitro, and the soil bacterium . It was found that the studied Se NCs have an antibacterial effect against the phytopathogenic , reducing its growth rate and ability to form biofilms. It was revealed that Se NC based on AG (Se/AG NC) stimulated the growth and development of potato plants in vitro as well as their root formation.

View Article and Find Full Text PDF

The ever-increasing application of selenium nanoparticles in medicine generates a need for thorough assessment of their effects on the living organism to prevent undesirable and dangerous toxic processes. The biological action of selenium nanoparticles strongly depends on the administrated dose. This stimulates in-depth study of possible mechanisms of their toxic effect, especially when they are applied in high doses.

View Article and Find Full Text PDF

In the present study, water-soluble hybrid selenium-containing nanocomposites have been synthesised via soft oxidation of selenide-anions, preliminarily generated from elemental bulk-selenium in the base-reduction system 'NH-NaOH'. The nanocomposites obtained consist of SeNPs (4.6-24.

View Article and Find Full Text PDF

Background: It has been previously found that humic substances (HSs) can serve as the environmentally benign non-toxic agent for the preparation of magnetic and noble metals nanoparticles that are increasingly used in biomedicine. The structure of HSs and, hence, their synthetic potential depend on the source of their origin. Thus, humification character, determined by conditions and duration of complex transformation of organic remains in HSs can evidence their structure, in particular their aromaticity and oxidation degree.

View Article and Find Full Text PDF

Novel water-soluble chiroplasmonic nanobiocomposites with directly varied gold content were synthesized by a one-step redox method in water using a biocompatible polysaccharide κ-carrageenan (industrial product from algae) as both reducing and stabilizing matrix. The influence of the reactants ratio, temperature, and pH on the reaction was studied and the optimal reaction parameters were found. The structure and the properties of composite nanomaterials were examined in solid state and aqueous solutions by using complementary physical-chemical methods X-ray diffraction analysis, transmission electron microscopy, spectroscopy of electron paramagnetic resonance, atomic absorption and optical spectroscopy, polarimetry including optical rotatory dispersion with registration of interphase-crossbred Cotton effect of a chiral polysaccharide matrix on plasmonic chromophore of gold nanoparticles, dynamic and static light scattering.

View Article and Find Full Text PDF

Palladium nanoparticles (PdNPs) are used in catalysis, hydrogen storage, biomedicine, and so on. Arranging the self-assembly of PdNPs within colloidal aggregates is desirable for improving their consumer properties. Stable widely dispersed colloidal aggregates of larch arabinogalactan (LARB) containing nanosized (5-nm) PdNPs were obtained by reducing Pd ions in alkaline solutions of LARB.

View Article and Find Full Text PDF

Unlabelled: The first step of the interaction between Ag(0) nanocomposite with antiatherogenic anticoagulant sulfated arabinogalactan involves the transportation and concentration of antimicrobial nanosilver in the bacteria target (E. coli). Further, the silver ions in dynamic equilibrium with metal backbone of the nanoparticles (NPs) reach the membrane surface and bond with this surface.

View Article and Find Full Text PDF