Curr Opin Cell Biol
February 2020
Microtubules control cell architecture by serving as a scaffold for intracellular transport, signaling, and organelle positioning. Microtubules are intrinsically polarized, and their orientation, density, and post-translational modifications both respond and contribute to cell polarity. Animal cells that can rapidly reorient their polarity axis, such as fibroblasts, immune cells, and cancer cells, contain radially organized microtubule arrays anchored at the centrosome and the Golgi apparatus, whereas stably polarized cells often acquire non-centrosomal microtubule networks attached to the cell cortex, nucleus, or other structures.
View Article and Find Full Text PDFThe myosin family of motor proteins is an attractive target of therapeutic small-molecule protein inhibitors and modulators. Milligrams of protein quantities are required to conduct proper biophysical and biochemical studies to understand myosin functions. Myosin protein expression and purification represent a critical starting point towards this goal.
View Article and Find Full Text PDFCarcinomas constitute over 80% of all human cancer types with no effective therapy for metastatic disease. Here, we demonstrate, for the first time, the efficacy of therapeutic-ultrasound (TUS) to deliver a human tumor suppressor gene, hSef-b, to prostate tumors in vivo. Sef is downregulated in various human carcinomas, in a manner correlating with tumor aggressiveness.
View Article and Find Full Text PDFMitochondria respond to environmental cues and stress conditions. Additionally, the disruption of the mitochondrial network dynamics and its distribution is implicated in a variety of neurodegenerative diseases. Here, we reveal a new function for Myo19 in mitochondrial dynamics and localization during the cellular response to glucose starvation.
View Article and Find Full Text PDFThe NF-κB transcription factor controls diverse biological processes. According to the classical model, NF-κB is retained in the cytoplasm of resting cells via binding to inhibitory, IκB proteins and translocates into the nucleus upon their ligand-induced degradation. Here we reveal that Sef, a known tumor suppressor and inhibitor of growth factor signaling, is a spatial regulator of NF-κB.
View Article and Find Full Text PDF