Publications by authors named "Boris Prilutsky"

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF
Article Synopsis
  • Previous research has highlighted the importance of hindlimb muscle morphology in locomotion, but the role of forelimb muscle structure in motor outputs and sensory signal generation is less understood.
  • This study measured the morphological features of 46 forelimb muscles in cats and analyzed their function during different types of locomotion, revealing significant relationships between muscle characteristics and force production.
  • Results indicate that forelimb muscle morphology plays a vital role in controlling lateral stability and turning movements, emphasizing its importance beyond just propulsion in locomotion.
View Article and Find Full Text PDF
Article Synopsis
  • Mammal locomotion is regulated by a spinal neuronal network that interacts with signals from the brain and sensory feedback from the limbs.
  • * The study created a computational model to understand how this spinal network functions during different types of walking, particularly in cats, highlighting how it mimics real-life locomotion under various conditions.
  • * Findings indicate that at slower speeds, the spinal network needs sensory feedback to function properly, while at faster speeds, it shifts to different operational modes, suggesting distinct control mechanisms for varying locomotor behaviors like exploring versus escaping.
View Article and Find Full Text PDF

It was suggested that during locomotion, the nervous system controls movement by activating groups of muscles, or muscle synergies. Analysis of muscle synergies can reveal the organization of spinal locomotor networks and how it depends on the state of the nervous system, such as before and after spinal cord injury, and on different locomotor conditions, including a change in speed. The goal of this study was to investigate the effects of spinal transection and locomotor speed on hindlimb muscle synergies and their time-dependent activity patterns in adult cats.

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous afferents in cats help coordinate muscle activity across all four limbs during movement, especially when external obstacles are encountered.
  • The study investigated how reflex pathways in the limbs are affected after incomplete spinal cord injuries, using a staggered thoracic hemisection model to simulate the injury in seven adult cats.
  • Results indicated a significant loss in reflex responses and limb coordination after spinal injury, with some reflexes preserving modulation, suggesting compromised but not entirely lost functionality in response to external disturbances.
View Article and Find Full Text PDF

Locomotion is controlled by spinal circuits that interact with supraspinal drives and sensory feedback from the limbs. These sensorimotor interactions are disrupted following spinal cord injury. The thoracic lateral hemisection represents an experimental model of an incomplete spinal cord injury, where connections between the brain and spinal cord are abolished on one side of the cord.

View Article and Find Full Text PDF

Introduction: Approximately 89% of all service members with amputations do not return to duty. Restoring intuitive neural control with somatosensory sensation is a key to improving the safety and efficacy of prosthetic locomotion. However, natural somatosensory feedback from lower-limb prostheses has not yet been incorporated into any commercial prostheses.

View Article and Find Full Text PDF

Previous studies established strong links between morphological characteristics of mammalian hindlimb muscles and their sensorimotor functions during locomotion. Less is known about the role of forelimb morphology in motor outputs and generation of sensory signals. Here, we measured morphological characteristics of 46 forelimb muscles from 6 cats.

View Article and Find Full Text PDF

In quadrupeds, such as cats, cutaneous afferents from the forepaw dorsum signal external perturbations and send signals to spinal circuits to coordinate the activity in muscles of all four limbs. How these cutaneous reflex pathways from forelimb afferents are reorganized after an incomplete spinal cord injury is not clear. Using a staggered thoracic lateral hemisections paradigm, we investigated changes in intralimb and interlimb reflex pathways by electrically stimulating the left and right superficial radial nerves in seven adult cats and recording reflex responses in five forelimb and ten hindlimb muscles.

View Article and Find Full Text PDF

During quadrupedal locomotion, interactions between spinal and supraspinal circuits and somatosensory feedback coordinate forelimb and hindlimb movements. How this is achieved is not clear. To determine whether forelimb movements modulate hindlimb cutaneous reflexes involved in responding to an external perturbation, we stimulated the superficial peroneal nerve in six intact cats during quadrupedal locomotion and during hindlimb-only locomotion (with forelimbs standing on stationary platform) and in two cats with a low spinal transection (T12-T13) during hindlimb-only locomotion.

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous afferents help coordinate muscle activity in all four limbs when walking, and spinal cord injuries disrupt this coordination, affecting balance and movement.
  • Researchers stimulated superficial peroneal nerves in adult cats after spinal cord hemisections and found that coordination in limbs diminished and required assistance for balance following injuries.
  • While short-latency reflexes remained mostly intact, mid- and long-latency responses decreased significantly, indicating that cutaneous reflex changes contribute to balance and coordination issues in locomotion post-injury.
View Article and Find Full Text PDF

Locomotion in mammals is directly controlled by the spinal neuronal network, operating under the control of supraspinal signals and somatosensory feedback that interact with each other. However, the functional architecture of the spinal locomotor network, its operation regimes, and the role of supraspinal and sensory feedback in different locomotor behaviors, including at different speeds, remain unclear. We developed a computational model of spinal locomotor circuits receiving supraspinal drives and limb sensory feedback that could reproduce multiple experimental data obtained in intact and spinal-transected cats during tied-belt and split-belt treadmill locomotion.

View Article and Find Full Text PDF

When the foot dorsum contacts an obstacle during locomotion, cutaneous afferents signal central circuits to coordinate muscle activity in the four limbs. Spinal cord injury disrupts these interactions, impairing balance and interlimb coordination. We evoked cutaneous reflexes by electrically stimulating left and right superficial peroneal nerves before and after two thoracic lateral hemisections placed on opposite sides of the cord at 9-13 weeks interval in seven adult cats (4 males and 3 females).

View Article and Find Full Text PDF
Article Synopsis
  • Cutaneous reflexes are crucial during movement, helping to quickly respond to obstacles and prevent falls, and are modulated based on the task and movement phase in both cats and humans.
  • The study investigated how these reflexes function by electrically stimulating specific nerves in adult cats while they walked on different treadmill setups (tied-belt and split-belt) and recorded the muscle activity in all limbs.
  • Findings indicate that while reflex patterns were consistent across both walking conditions, split-belt locomotion led to reduced modulation of reflexes in some muscles and increased variability in left-right motion symmetry to maintain stability.
View Article and Find Full Text PDF
Article Synopsis
  • - The study examined how spinal sensorimotor circuits in cats interact with other body inputs to manage walking, focusing on how spinal cord injuries disrupt these processes.
  • - After performing staggered injuries on the spinal cord, the researchers found that cats could recover some quadrupedal movement but needed help with balance, and their limb coordination became less stable.
  • - Despite significant challenges to coordination and posture after injuries, cats showed quick recovery of hindlimb movement, highlighting the importance of lumbar spinal circuits in regaining locomotion.
View Article and Find Full Text PDF

Unlabelled: Spinal sensorimotor circuits interact with supraspinal and peripheral inputs to generate quadrupedal locomotion. Ascending and descending spinal pathways ensure coordination between the fore-and hindlimbs. Spinal cord injury disrupts these pathways.

View Article and Find Full Text PDF

Coordinating the four limbs is an important feature of terrestrial mammalian locomotion. When the foot dorsum contacts an obstacle, cutaneous mechanoreceptors send afferent signals to the spinal cord to elicit coordinated reflex responses in the four limbs to ensure dynamic balance and forward progression. To determine how the locomotor pattern of all four limbs changes in response to a sensory perturbation evoked by activating cutaneous afferents from one hindlimb, we electrically stimulated the superficial peroneal (SP) nerve with a relatively long train at four different phases (mid-stance, stance-to-swing transition, mid-swing, and swing-to-stance transition) of the hindlimb cycle in seven adult cats.

View Article and Find Full Text PDF

Most previous studies investigated the recovery of locomotion in animals and people with incomplete spinal cord injury (SCI) during relatively simple tasks (e.g., walking in a straight line on a horizontal surface or a treadmill).

View Article and Find Full Text PDF

People perceive hand position in horizontal workspace more precisely in radial than in azimuth directions and closer to the body than farther away. Current explanations for this position sense non-uniformity include spatial asymmetry in arm proprioceptive activities and/or cortex maps, experience-dependent learning, arm posture, and others. Here we investigated contributions to this non-uniformity of a posture-dependent transformation from arm joint angles, sensed by arm proprioceptors, to hand position.

View Article and Find Full Text PDF

Cutaneous feedback from feet is involved in regulation of muscle activity during locomotion, and the lack of this feedback results in motor deficits. We tested the hypothesis that locomotor changes caused by local unilateral anesthesia of paw pads in the cat could be reduced/reversed by electrical stimulation of cutaneous and proprioceptive afferents in the distal tibial nerve during stance. Several split-belt conditions were investigated in four adult female cats.

View Article and Find Full Text PDF

Cat paw shaking is a spinal reflex for removing an irritating stimulus from paw by developing extremely high paw accelerations. Previous studies of paw shaking revealed a proximal-to-distal gradient of hindlimb segmental velocities/accelerations, as well as complex inter-joint coordination: passive motion-dependent interaction moments acting on distal segments are opposed by distal muscle moments. However, mechanisms of developing extreme paw accelerations during paw shaking remain unknown.

View Article and Find Full Text PDF

Coordinating the four limbs is critical for terrestrial mammalian locomotion. Thoracic spinal transection abolishes neural communication between the brain and spinal networks controlling hindlimb/leg movements. Several studies have shown that animal models of spinal transection (spinalization), such as mice, rats, cats, and dogs recover hindlimb locomotion with the forelimbs stationary or suspended.

View Article and Find Full Text PDF

Locomotion after complete spinal cord injury (spinal transection) in animal models is usually evaluated in a hindlimb-only condition with the forelimbs suspended or placed on a stationary platform and compared with quadrupedal locomotion in the intact state. However, because of the quadrupedal nature of movement in these animals, the forelimbs play an important role in modulating the hindlimb pattern. This raises the question: whether changes in the hindlimb pattern after spinal transection are due to the state of the system (intact versus spinal) or because the locomotion is hindlimb-only.

View Article and Find Full Text PDF

When animals walk overground, mechanical stimuli activate various receptors located in muscles, joints, and skin. Afferents from these mechanoreceptors project to neuronal networks controlling locomotion in the spinal cord and brain. The dynamic interactions between the control systems at different levels of the neuraxis ensure that locomotion adjusts to its environment and meets task demands.

View Article and Find Full Text PDF