Recently, giant coercivities (20-42 kOe) and sub-terahertz natural ferromagnetic resonance (NFMR) at 100-300 GHz were observed for single-domain M-type hexaferrite particles with high aluminum substitution. Herein, we fabricated dense ceramics of SrCaFeAlO and, for the first time, investigated their magnetostatic and magnetodynamic properties in the temperature range of 5-300 K. It was shown that dense ceramics maintain their high magnetic hardness (a coercivity of 10-20 kOe) and NFMR frequencies of 140-200 GHz durably in the entire temperature range.
View Article and Find Full Text PDFStrontium titanate SrTiO (STO) is a canonical example of a quantum paraelectric, and its doping with manganese ions unlocks its potential as a quantum multiferroic candidate. However, to date, the specifics of incorporation of the manganese ion into the perovskite lattice and its impact on structure-property relationships are debatable questions. Herein, using high-precision X-ray diffraction of a Mn (2 atom %)-doped STO single crystal, clear fingerprints of the displacement disorder of Mn cations in the perovskite B-sublattice are observed.
View Article and Find Full Text PDFCorrection for 'High-coercivity hexaferrite ceramics featuring sub-terahertz ferromagnetic resonance' by Evgeny A. Gorbachev , , 2022, , 1264-1272, DOI: https://doi.org/10.
View Article and Find Full Text PDFStretchable and flexible electronics has attracted broad attention over the last years. Nanocomposites based on elastomers and carbon nanotubes are a promising material for soft electronic applications. Despite the fact that single-walled carbon nanotube (SWCNT) based nanocomposites often demonstrate superior properties, the vast majority of the studies were devoted to those based on multiwalled carbon nanotubes (MWCNTs) mainly because of their higher availability and easier processing procedures.
View Article and Find Full Text PDFWe have studied the radio frequency dielectric response of a system consisting of separate polar water molecules periodically arranged in nanocages formed by the crystal lattice of the gemstone beryl. Below = 20-30 K, quantum effects start to dominate the properties of the electric dipolar system as manifested by a crossover between the Curie-Weiss and the Barrett regimes in the temperature-dependent real dielectric permittivity ε'(). When analyzing in detail the temperature evolution of the reciprocal permittivity (ε') down to ≈ 0.
View Article and Find Full Text PDFFollowing the game-changing high-pressure CO (HiPco) process that established the first facile route toward large-scale production of single-walled carbon nanotubes, CO synthesis of cm-sized graphene crystals of ultra-high purity grown during tens of minutes is proposed. The Boudouard reaction serves for the first time to produce individual monolayer structures on the surface of a metal catalyst, thereby providing a chemical vapor deposition technique free from molecular and atomic hydrogen as well as vacuum conditions. This approach facilitates inhibition of the graphene nucleation from the CO/CO mixture and maintains a high growth rate of graphene seeds reaching large-scale monocrystals.
View Article and Find Full Text PDFHerein, we demonstrate for the first time compact ferrite ceramics with giant coercivity. The materials are manufactured sintering single-domain SrCaFeAlO particles synthesized by a citrate-nitrate auto-combustion method. The obtained ceramics show coercivities up to 22.
View Article and Find Full Text PDFEumelanin is a widespread biomacromolecule pigment in the biosphere and has been widely investigated for numerous bioelectronics and energetic applications. Many of these applications depend on eumelanin's ability to conduct proton current at various levels of hydration. The origin of this behavior is connected to a comproportionation reaction between oxidized and reduced monomer moieties and water.
View Article and Find Full Text PDFLow-energy excitations of a single water molecule are studied when confined within a nano-size cavity formed by the ionic crystal lattice. Optical spectra are measured of manganese doped beryl single crystal Mn:Be3Al2Si6O18, that contains water molecules individually isolated in 0.51 nm diameter voids within the crystal lattice.
View Article and Find Full Text PDFWhen water is confined to nanocavities, its quantum mechanical behavior can be revealed by terahertz spectroscopy. We place H2O molecules in the nanopores of a beryl crystal lattice and observe a rich and highly anisotropic set of absorption lines in the terahertz spectral range. Two bands can be identified, which originate from translational and librational motions of the water molecule isolated within the cage; they correspond to the analogous broad bands in liquid water and ice.
View Article and Find Full Text PDF: Issues of Ge hut cluster array formation and growth at low temperatures on the Ge/Si(001) wetting layer are discussed on the basis of explorations performed by high resolution STM and in-situ RHEED. Dynamics of the RHEED patterns in the process of Ge hut array formation is investigated at low and high temperatures of Ge deposition. Different dynamics of RHEED patterns during the deposition of Ge atoms in different growth modes is observed, which reflects the difference in adatom mobility and their 'condensation' fluxes from Ge 2D gas on the surface for different modes, which in turn control the nucleation rates and densities of Ge clusters.
View Article and Find Full Text PDF