Publications by authors named "Boris N Korvatovskiy"

Herein, the effect of cationic antiseptics (chlorhexidine, picloxidine, miramistin, octenidine) on the initial processes of the delivery of light energy and its efficient use by the reaction centers in intact spinach photosystem II core complexes has been investigated. The characteristic effects-an increase in the fluorescence yield of light-harvesting pigments and a slowdown in the rate of energy migration in bacterial photosynthetic chromatophores has been recently demonstrated mainly in the presence of octenidine (Strakhovskaya et al., in Photosynth Res 147:197-209, 2021; Knox et al.

View Article and Find Full Text PDF

Photosynthetic membrane complexes of purple bacteria are convenient and informative macromolecular systems for studying the mechanisms of action of various physicochemical factors on the functioning of catalytic proteins both in an isolated state and as part of functional membranes. In this work, we studied the effect of cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine) on the fluorescence intensity and the efficiency of energy transfer from the light-harvesting LH1 complex to the reaction center (RC) of Rhodospirillum rubrum chromatophores. The effect of antiseptics on the fluorescence intensity and the energy transfer increased in the following order: chlorhexidine, picloxydine, miramistin, octenidine.

View Article and Find Full Text PDF

Chromatophores of purple non-sulfur bacteria (PNSB) are invaginations of the cytoplasmic membrane that contain a relatively simple system of light-harvesting protein-pigment complexes, a photosynthetic reaction center (RC), a cytochrome complex, and ATP synthase, which transform light energy into the energy of synthesized ATP. The high content of negatively charged phosphatidylglycerol (PG) and cardiolipin (CL) in PNSB chromatophore membranes makes these structures potential targets that bind cationic antiseptics. We used the methods of stationary and kinetic fluorescence spectroscopy to study the effect of some cationic antiseptics (chlorhexidine, picloxydine, miramistin, and octenidine at concentrations up to 100 μM) on the spectral and kinetic characteristics of the components of the photosynthetic apparatus of Rhodobacter sphaeroides chromatophores.

View Article and Find Full Text PDF
Article Synopsis
  • The study investigates the effects of temperature on tryptophan fluorescence lifetime in trimeric photosystem I (PSI) complexes from cyanobacteria at varying temperatures from -180 °C to 20 °C.
  • Samples frozen in light exhibited longer fluorescence lifetimes compared to those frozen in the dark, with specific lifetimes noted for components within 65% glycerol.
  • The analysis highlighted how temperature variations influence protein dynamics and electron transfer in cyanobacterial PSI compared to Rhodobacter sphaeroides complexes, revealing an antiphase relationship between certain fluorescence components' contributions.
View Article and Find Full Text PDF
Article Synopsis
  • The study explored how temperature impacts the rate of dark recombination between charges in photosynthetic reaction centers of Rhodobacter sphaeroides.
  • Measurements were taken in water-glycerol and trehalose environments at extremely low temperatures, assessing both the recombination rates and fluorescence lifetimes of tryptophan.
  • Findings indicate two main microconformations in the reaction centers, suggesting different electron transfer dynamics based on whether the centers were frozen in the dark or under light.
View Article and Find Full Text PDF

Transient absorption changes induced by excitation of isolated reaction centers (RCs) from Rhodobacter sphaeroides with 600nm laser pulses of 20fs (full width at half maximum) were monitored in the wavelength region of 420-560nm. The spectral features of the spectrum obtained are characteristic for an electrochromic band shift of the single carotenoid (Car) molecule spheroidene, which is an integral constituent of these RCs. This effect is assigned to an electrochromic bandshift of Car due to the local electric field of the dipole moment formed by electronic excitation of bacteriochlorophyll (BChl) molecule(s) in the neighborhood of Car.

View Article and Find Full Text PDF