ACS Mater Lett
February 2025
Here, we report the solvent-induced polymorphism in [Cu(PET)(TPP)][BF](Cu) (TPP = triphenylphosphine, PET = 2-phenylethanthiol), and double-helical assembly of the [CuH(PET)(TPP)Cl] (Cu) nanocluster (NC) from reaction intermediates. Both copper NCs have an intrinsically chiral triple-stranded helicate metal core, unlike traditional copper NCs with a polyhedral-based kernel. The chiral structure of Cu resembles an enantiomeric pair in the unit cell.
View Article and Find Full Text PDFPt-based alloys, such as Pt3Ni, are among the best electrocatalysts for oxygen reduction reaction (ORR) in polymer electrolyte membrane fuel cells. Doping of PtNi alloys with Zr was shown to enhance the durability of the operating ORR catalysts. Rationalizing these observations is hindered by the absence of atomic-level data for these tri-metallic materials, even when not exposed to the fuel cell operation conditions.
View Article and Find Full Text PDFThe proton transport mechanism in superprotonic phases of solid acids has been a subject of experimental and theoretical studies for a number of years. Despite this, details of the mechanism still need further clarification. In particular in the M3H(AO4)2 family of crystals, where M = NH4, K, Rb, Cs, and A = S, Se, the proton diffusion is mostly considered in the (001) plane, whereas it is relatively high in the [001] direction as well.
View Article and Find Full Text PDFElectrochemical stability windows of electrolytes largely determine the limitations of operating regimes of lithium-ion batteries, but the degradation mechanisms are difficult to characterize and poorly understood. Using computational quantum chemistry to investigate the oxidative decomposition that govern voltage stability of multi-component organic electrolytes, we find that electrolyte decomposition is a process involving the solvent and the salt anion and requires explicit treatment of their coupling. We find that the ionization potential of the solvent-anion system is often lower than that of the isolated solvent or the anion.
View Article and Find Full Text PDFIonic liquids (ILs) are promising materials for application in a new generation of Li batteries. They can be used as electrolyte or interlayer or incorporated into other materials. ILs have the ability to form a stable solid electrochemical interface (SEI), which plays an important role in protecting the Li-based electrode from oxidation and the electrolyte from extensive decomposition.
View Article and Find Full Text PDFA detailed experimental analysis of the factors affecting cyclic durability of all-solid-state lithium batteries using poly(ethylene oxide)-based polymer electrolytes was published in EES by Nakayama et al. We use quantum mechanics to interpret these results, identifying processes involved in the degradation of rechargeable lithium batteries based on polyethylene oxide (PEO) polymer electrolyte with LiTFSI. We consider that ionization of the electrolyte near the cathode at the end of the recharge step is probably responsible for this degradation.
View Article and Find Full Text PDFHydrogen oxidation reaction (HOR) and hydrogen evolution reaction (HER) are both 2 orders slower in alkaline electrolyte than in acidic electrolyte, but no explanation has been provided. The first step toward understanding this dramatic pH-dependent HOR/HER performance is to explain the pH-dependent hydrogen binding to the electrode, a perplexing behavior observed experimentally. In this work, we carried out Quantum Mechanics Molecular Dynamics (QMMD) with explicit considerations of solvent and applied voltage ( U) to in situ simulate water/Pt(100) interface in the condition of under-potential adsorption of hydrogen ( H).
View Article and Find Full Text PDFThe sluggish oxygen reduction reaction (ORR) is a major impediment to the economic use of hydrogen fuel cells in transportation. In this work, we report the full ORR reaction mechanism for Pt(111) based on Quantum Mechanics (QM) based Reactive metadynamics (RμD) simulations including explicit water to obtain free energy reaction barriers at 298 K. The lowest energy pathway for 4 e water formation is: first, *OOH formation; second, *OOH reduction to HO and O*; third, O* hydrolysis using surface water to produce two *OH and finally *OH hydration to water.
View Article and Find Full Text PDFImproving the platinum (Pt) mass activity for the oxygen reduction reaction (ORR) requires optimization of both the specific activity and the electrochemically active surface area (ECSA). We found that solution-synthesized Pt/NiO core/shell nanowires can be converted into PtNi alloy nanowires through a thermal annealing process and then transformed into jagged Pt nanowires via electrochemical dealloying. The jagged nanowires exhibit an ECSA of 118 square meters per gram of Pt and a specific activity of 11.
View Article and Find Full Text PDFIt is well known that graphite has a low capacity for Na but a high capacity for other alkali metals. The growing interest in alternative cation batteries beyond Li makes it particularly important to elucidate the origin of this behavior, which is not well understood. In examining this question, we find a quite general phenomenon: among the alkali and alkaline earth metals, Na and Mg generally have the weakest chemical binding to a given substrate, compared with the other elements in the same column of the periodic table.
View Article and Find Full Text PDFThe densifying kinetics of lithium dendrites is characterized with effective activation energy of Ea ≈ 6 - 7 kcal mol(-1) in our experiments and molecular dynamics computations. We show that heating lithium dendrites for 55 °C reduces the representative dendrites length λ¯(T,t) up to 36%. NVT reactive force field simulations on three-dimensional glass phase dendrites produced by our coarse grained Monte Carlo method reveal that for any given initial dendrite morphology, there is a unique stable atomic arrangement for a certain range of temperature, combined with rapid morphological transition (∼10 ps) within quasi-stable states involving concurrent bulk and surface diffusions.
View Article and Find Full Text PDFIn our study, the Ni/YSZ ReaxFF reactive force field was developed by combining the YSZ and Ni/C/H descriptions. ReaxFF reactive molecular dynamics (RMD) were applied to model chemical reactions, diffusion, and other physicochemical processes at the fuel/Ni/YSZ interface. The ReaxFF RMD simulations were performed on the H2/Ni/YSZ and C4H10/Ni/YSZ triple-phase boundary (TPB) systems at 1250 and 2000 K, respectively.
View Article and Find Full Text PDFThe average lengths λ̅ of lithium dendrites produced by charging symmetric Li(0) batteries at various temperatures are matched by Monte Carlo computations dealing both with Li(+) transport in the electrolyte and thermal relaxation of Li(0) electrodeposits. We found that experimental λ̅(T) variations cannot be solely accounted by the temperature dependence of Li(+) mobility in the solvent but require the involvement of competitive Li-atom transport from metastable dendrite tips to smoother domains over ΔE(++)(R) ∼ 20 kJ mol(-1) barriers. A transition state theory analysis of Li-atom diffusion in solids yields a negative entropy of activation for the relaxation process: ΔS(++)(R) ≈ -46 J mol(-1) K(-1) that is consistent with the transformation of amorphous into crystalline Li(0) electrodeposits.
View Article and Find Full Text PDFShort-circuiting via dendrites compromises the reliability of Li-metal batteries. Dendrites ensue from instabilities inherent to electrodeposition that should be amenable to dynamic control. Here, we report that by charging a scaled coin-cell prototype with 1 ms pulses followed by 3 ms rest periods the average dendrite length is shortened ∼2.
View Article and Find Full Text PDFWe report results of quantum mechanics (QM) mechanistic studies of Nafion membrane degradation in a polymer electrolyte membrane (PEM) fuel cell. Experiments suggest that Nafion degradation is caused by generation of trace radical species (such as OH(●), H(●)) only when in the presence of H(2), O(2), and Pt. We use density functional theory (DFT) to construct the potential energy surfaces for various plausible reactions involving intermediates that might be formed when Nafion is exposed to H(2) (or H(+)) and O(2) in the presence of the Pt catalyst.
View Article and Find Full Text PDFWe carried out quantum mechanical calculations (Perdew-Becke-Ernzerhof flavor of density functional theory) on 12.5% Y-doped BaZrO(3) (BYZ) periodic structures to obtain energy barriers for intraoctahedral and interoctahedral proton transfers. We find activation energy (E(a)) values of 0.
View Article and Find Full Text PDFProton-conducting perovskites such as Y-doped BaZrO 3 (BYZ) are promising candidates as electrolytes for a proton ceramic fuel cell (PCFC) that might permit much lower temperatures (from 400 to 600 degrees C). However, these materials lead to relatively poor total conductivity ( approximately 10 (-4) S/cm) because of extremely high grain boundary resistance. In order to provide the basis for improving these materials, we developed the ReaxFF reactive force field to enable molecular dynamics (MD) simulations of proton diffusion in the bulk phase and across grain boundaries of BYZ.
View Article and Find Full Text PDFWe present the ReaxFF reactive force field developed to provide a first-principles-based description of oxygen ion transport through yttria-stabilized zirconia (YSZ) solid oxide fuel cell (SOFC) membranes. All parameters for ReaxFF were optimized to reproduce quantum mechanical (QM) calculations on relevant condensed phase and cluster systems. We validated the use of ReaxFF for fuel cell applications by using it in molecular dynamics (MD) simulations to predict the oxygen ion diffusion coefficient in yttria-stabilized zirconia as a function of temperature.
View Article and Find Full Text PDF