Publications by authors named "Boris Luk'yanchuk"

Article Synopsis
  • - Fog is made up of tiny water droplets in the air, created by the cooling of moist air, and can turn into ice fog at temperatures below -10 to -15°C.
  • - Ice droplets can have a unique core-shell structure, allowing for the possibility of a high-Q Fano resonance, which generates a magnetic pulse.
  • - The study presents new theoretical findings about how time-dependent Fano resonances in freezing water droplets can enhance light-matter interactions, a topic not previously explored.
View Article and Find Full Text PDF

Label-free super-resolution (LFSR) imaging relies on light-scattering processes in nanoscale objects without a need for fluorescent (FL) staining required in super-resolved FL microscopy. The objectives of this Roadmap are to present a comprehensive vision of the developments, the state-of-the-art in this field, and to discuss the resolution boundaries and hurdles which need to be overcome to break the classical diffraction limit of the LFSR imaging. The scope of this Roadmap spans from the advanced interference detection techniques, where the diffraction-limited lateral resolution is combined with unsurpassed axial and temporal resolution, to techniques with true lateral super-resolution capability which are based on understanding resolution as an information science problem, on using novel structured illumination, near-field scanning, and nonlinear optics approaches, and on designing superlenses based on nanoplasmonics, metamaterials, transformation optics, and microsphere-assisted approaches.

View Article and Find Full Text PDF

The concept of invisible optical states in dielectric particles is developed. Two cases for excitation of invisible states are discussed. The first one is the excitation in the microparticles with fixed shapes (e.

View Article and Find Full Text PDF

Kerker effect is one of the unique phenomena in modern electrodynamics. Due to overlapping of electric and magnetic dipole moments, all-dielectric particles can be invisible in forward or backward directions. In our paper we propose new conditions between resonantly excited electric dipole and magnetic quadrupole in ceramic high index spheroidal particles for demonstrating transverse Kerker effect.

View Article and Find Full Text PDF

We show that weakly dissipating dielectric spheres made of materials such as glass, quartz, etc. can support high order Fano resonances associated with internal Mie modes. These resonances, happening for specific values of the size parameter, yield field-intensity enhancement factors on the order of 10-10, which can be directly obtained from analytical calculations.

View Article and Find Full Text PDF

With the recent burgeoning advances in nano-optics, ultracompact, miniaturized photonic devices with high-quality and spectacular functionalities are highly desired. Such devices' design paradigms often call for the solution of a complex inverse nonanalytical/semianalytical problem. However, currently reported strategies dealing with amplitude-controlled meta-optics devices achieved limited functionalities mainly due to restricted search space and demanding computational schemes.

View Article and Find Full Text PDF

With the rapid progress in computer science, including artificial intelligence, big data and cloud computing, full-space spot generation can be pivotal to many practical applications, such as facial recognition, motion detection, augmented reality, etc. These opportunities may be achieved by using diffractive optical elements (DOEs) or light detection and ranging (LIDAR). However, DOEs suffer from intrinsic limitations, such as demanding depth-controlled fabrication techniques, large thicknesses (more than the wavelength), Lambertian operation only in half space, etc.

View Article and Find Full Text PDF

Traditional objective lenses in modern microscopy, based on the refraction of light, are restricted by the Rayleigh diffraction limit. The existing methods to overcome this limit can be categorized into near-field (e.g.

View Article and Find Full Text PDF

In the era of big data, there exists a growing gap between data generated and storage capacity using two-dimensional (2D) magnetic storage technologies (for example, hard disk drives), because they have reached their performance saturation. 3D volumetric all-optical magnetic holography is emerging rapidly as a promising road map to realizing high-density capacity for its fast magnetization control and subwavelength magnetization volume. However, most of the reported light-induced magnetization confronts the problems of impurely longitudinal magnetization, diffraction-limited spot, and uncontrollable magnetization reversal.

View Article and Find Full Text PDF

Efficient transmission-type meta-holograms have been demonstrated using high-index dielectric nanostructures based on Huygens' principle. It is crucial that the geometry size of building blocks be judiciously optimized individually for spectral overlap of electric and magnetic dipoles. In contrast, reflection-type meta-holograms using the metal/insulator/metal scheme and geometric phase can be readily achieved with high efficiency and small thickness.

View Article and Find Full Text PDF

Subwavelength confined waveguiding is experimentally demonstrated with high refractive index dielectric nanoparticles with photon energy propagation at distances beyond 500 μm. These particles have naturally occurring electric and magnetic dipole resonances. When they are placed in a 1D chain, the magnetic resonances of adjacent elements couple to each other, providing a means to transport energy at visible or NIR wavelengths in a confined mode.

View Article and Find Full Text PDF

We reveal that an isotropic, homogeneous, subwavelength particle with high refractive index can produce ultra-small total scattering. This effect, which follows from the inhibition of the electric dipole radiation, can be identified as a Fano resonance in the scattering efficiency and is associated with the excitation of an anapole mode in the particle. This anapole mode is non-radiative and emerges from the destructive interference of electric and toroidal dipoles.

View Article and Find Full Text PDF

Rapid progress in nanophotonics is driven by the ability of optically resonant nanostructures to enhance near-field effects controlling far-field scattering through intermodal interference. A majority of such effects are usually associated with plasmonic nanostructures. Recently, a new branch of nanophotonics has emerged that seeks to manipulate the strong, optically induced electric and magnetic Mie resonances in dielectric nanoparticles with high refractive index.

View Article and Find Full Text PDF

Polarization is a key property defining the state of light. It was discovered by Brewster, while studying light reflected from materials at different angles. This led to the first polarizers, based on Brewster's effect.

View Article and Find Full Text PDF

We demonstrate that optical Fano resonance can be induced by the anisotropy of a cylinder rather than frequency selection under the resonant condition. A tiny perturbation in anisotropy can result in a giant switch in the principal optic axis near plasmon resonance. Such anisotropy-induced Fano resonance shows fast reversion between forward and backward scattering at the lowest-energy interference.

View Article and Find Full Text PDF

Nonradiating current configurations attract attention of physicists for many years as possible models of stable atoms. One intriguing example of such a nonradiating source is known as 'anapole'. An anapole mode can be viewed as a composition of electric and toroidal dipole moments, resulting in destructive interference of the radiation fields due to similarity of their far-field scattering patterns.

View Article and Find Full Text PDF

Miniaturization of optical structures makes it possible to control light at the nanoscale, but on the other hand it imposes a challenge of accurately handling numerous unit elements in a miniaturized device with aperiodic and random arrangements. Here, we report both the new analytical model and experimental demonstration of the photon sieves with ultrahigh-capacity of subwavelength holes (over 34 thousands) arranged in two different structural orders of randomness and aperiodicity. The random photon sieve produces a uniform optical hologram with high diffraction efficiency and free from twin images that are usually seen in conventional holography, while the aperiodic photon sieve manifests sub-diffraction-limit focusing in air.

View Article and Find Full Text PDF

The study of the resonant behavior of silicon nanostructures provides a new route for achieving efficient control of both electric and magnetic components of light. We demonstrate experimentally and numerically that enhancement of localized electric and magnetic fields can be achieved in a silicon nanodimer. For the first time, we experimentally observe hotspots of the magnetic field at visible wavelengths for light polarized across the nanodimer's primary axis, using near-field scanning optical microscopy.

View Article and Find Full Text PDF

Split-ring resonators are basic elements of metamaterials, which can induce a magnetic response in metallic nanosctructures. Tunability of such response up to the visible frequency range is still a challenge. Here we introduce the concept of the split-ball resonator and demonstrate the strong magnetic response in the visible for both gold and silver spherical plasmonic nanoparticles with nanometre scale cuts.

View Article and Find Full Text PDF

Super-resolution virtual imaging by micron sized transparent beads (microspheres) was recently demonstrated by Wang et al. Practical applications in microscopy require control over the positioning of the microspheres. Here we present a method of positioning and controllable movement of a microsphere by using a fine glass micropipette.

View Article and Find Full Text PDF

It is demonstrated herein both theoretically and experimentally that Young's interference can be observed in plasmonic structures when two or three nanoparticles with separation on the order of the wavelength are illuminated simultaneously by a plane wave. This effect leads to the formation of intermediate-field hybridized modes with a character distinct of those mediated by near-field and/or far-field radiative effects. The physical mechanism for the enhancement of absorption and scattering of light due to plasmonic Young's interference is revealed, which we explain through a redistribution of the Poynting vector field and the formation of near-field subwavelength optical vortices.

View Article and Find Full Text PDF

Directional light scattering by spherical silicon nanoparticles in the visible spectral range is experimentally demonstrated for the first time. These unique optical properties arise because of simultaneous excitation and mutual interference of magnetic and electric dipole resonances inside a single nanosphere. Such behaviour is similar to Kerker's-type scattering by hypothetic magneto-dielectric particles predicted theoretically three decades ago.

View Article and Find Full Text PDF

Spherical silicon nanoparticles with sizes of a few hundreds of nanometers represent a unique optical system. According to theoretical predictions based on Mie theory they can exhibit strong magnetic resonances in the visible spectral range. The basic mechanism of excitation of such modes inside the nanoparticles is very similar to that of split-ring resonators, but with one important difference that silicon nanoparticles have much smaller losses and are able to shift the magnetic resonance wavelength down to visible frequencies.

View Article and Find Full Text PDF

In this article, we investigate higher order (quadrupolar, octupolar, hexadecapolar, and triakontadipolar) Fano resonances generated in disk ring (DR) silver plasmonic nanostructures. We find that the higher order Fano resonances are generated when the size of the disk is reduced and falls into a certain range. With dual-disk ring (DDR) nanostructures, a rich set of tunable Fano line shapes is provided.

View Article and Find Full Text PDF

We have investigated the optical resonance and near field inside and under absorptive polystyrene (PS) microspheres on Si wafers. Near field flat plane images of PS microspheres were numerically simulated. Nanostructures were prepared on Si substrates using the regular two dimensional (2D) arrays by a single pulsed laser irradiation (KrF, lambda = 248 nm).

View Article and Find Full Text PDF