Philippe Ascher spent his last two decades as an emeritus Professor, working in the heart of Paris. Together with his wife Jacsue they were hosted in Alain Marty's laboratory and enjoyed the happiest retirement. We started our collaboration a few years after they started their retirement research at the Saint Pères campus where I was working on spinal motoneurons' physiology.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is the most common motor neuron (MN) disease in adults with no curative treatment. Neurofilament (NF) level in patient' fluids have recently emerged as the prime biomarker of ALS disease progression, while NF accumulation in MNs of patients is the oldest and one of the best pathological hallmarks. However, the way NF accumulations could lead to MN degeneration remains unknown.
View Article and Find Full Text PDFNeuronal nicotinic acetylcholine receptors (nAChRs) are pentamers built from a variety of subunits. Some are homomeric assemblies of α subunits, others heteromeric assemblies of α and β subunits which can adopt two stoichiometries (2α:3β or 3α:2β). There is evidence for the presence of heteromeric nAChRs with the two stoichiometries in the CNS, but it has not yet been possible to identify them at a given synapse.
View Article and Find Full Text PDFMuscle spindle proprioceptive receptors play a primary role in encoding the effects of external mechanical perturbations to the body. During externally-imposed stretches of passive, i.e.
View Article and Find Full Text PDFIn neonatal mice motoneurons excite Renshaw cells by releasing both acetylcholine (ACh) and glutamate. These two neurotransmitters activate two types of nicotinic receptors (nAChRs) (the homomeric α receptors and the heteromeric α*ß* receptors) as well as the two types of glutamate receptors (GluRs) (AMPARs and NMDARs). Using paired recordings, we confirm that a single motoneuron can release both transmitters on a single post-synaptic Renshaw cell.
View Article and Find Full Text PDFElectrophysiological recordings from spinal cord slices have proven to be a valuable technique to investigate a wide range of questions, from cellular to network properties. We show how to prepare viable oblique slices of the spinal cord of young mice (P2 - P11). In this preparation, the motoneurons retain their axons coming out from the ventral roots of the spinal cord.
View Article and Find Full Text PDFIn neonatal mice, fast- and slow-type motoneurons display different patterns of discharge. In response to a long liminal current pulse, the discharge is delayed up to several seconds in fast-type motoneurons and their firing frequency accelerates. In contrast, slow-type motoneurons discharge immediately, and their firing frequency decreases at the beginning of the pulse.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a severe and incurable neurodegenerative disease. Human motor neurons generated from induced pluripotent stem cells (iPSc) offer new perspectives for disease modeling and drug testing in ALS. In standard iPSc-derived cultures, however, the two major phenotypic alterations of ALS--degeneration of motor neuron cell bodies and axons--are often obscured by cell body clustering, extensive axon criss-crossing and presence of unwanted cell types.
View Article and Find Full Text PDFRenshaw cells in the spinal cord ventral horn regulate motoneuron output through recurrent inhibition. Renshaw cells can be identified in vitro using anatomical and cellular criteria; however, their functional role in locomotion remains poorly defined because of the difficulty of functionally isolating Renshaw cells from surrounding motor circuits. Here we aimed to investigate whether the cholinergic nicotinic receptor alpha2 (Chrna2) can be used to identify Renshaw cells (RCs(α2)) in the mouse spinal cord.
View Article and Find Full Text PDFIn amyotrophic lateral sclerosis (ALS) the large motoneurons that innervate the fast-contracting muscle fibers (F-type motoneurons) are vulnerable and degenerate in adulthood. In contrast, the small motoneurons that innervate the slow-contracting fibers (S-type motoneurons) are resistant and do not degenerate. Intrinsic hyperexcitability of F-type motoneurons during early postnatal development has long been hypothesized to contribute to neural degeneration in the adult.
View Article and Find Full Text PDFMost neuronal heteromeric nicotinic receptors seem able to adopt two different stochiometries depending on the ratio of α and β subunits. In recombinant receptors these two stoichiometries have been associated with different affinities to ACh, but it is not known which stoichiometry is present at nicotinic synapses in the nervous system. One possible clue to this identification is the speed of decay of the synaptic currents.
View Article and Find Full Text PDFBiochem Pharmacol
October 2013
In Renshaw cells (RCs) of newborn mice, activation of motoneurons elicits a four-component synaptic current (EPSC) mediated by two glutamate receptors and two nicotinic receptors (nAChRs). We have analyzed the nicotinic component of the EPSC which is blocked by dihydro-beta-erythroidine (DHβE) with the dual objective of identifying the nAChR subunits involved and of understanding the kinetics of the response. The sensitivity to DHβE of the peak of the EPSC was differentially affected by genetic deletion of three specific nAChR subunits: α2, β2 and β4.
View Article and Find Full Text PDFAcetylcholinesterase (AChE) rapidly hydrolyzes acetylcholine. At the neuromuscular junction, AChE is mainly anchored in the extracellular matrix by the collagen Q, whereas in the brain, AChE is tethered by the proline-rich membrane anchor (PRiMA). The AChE-deficient mice, in which AChE has been deleted from all tissues, have severe handicaps.
View Article and Find Full Text PDFIn spinal cord slices from newborn mice we have analyzed the kinetics of the EPSCs mediated by heteromeric nicotinic receptors at the motoneuron-Renshaw cell (MN-RC) synapse. The miniature EPSCs decay with a time constant of 13.0 ± 1.
View Article and Find Full Text PDFRenshaw cells (RCs) are spinal interneurons excited by collaterals of the axons of motoneurons (MNs). They respond to a single motoneuronal volley by a surprisingly long (tens of milliseconds) train of action potentials. We have analyzed this synaptic response in spinal cord slices of neonatal mice in light of recent observations suggesting that the MN axons release both acetylcholine and glutamate.
View Article and Find Full Text PDFDendrites may exhibit many types of electrical and morphological heterogeneities at the scale of a few micrometers. Models of neurons, even so-called detailed models, rarely consider such heterogeneities. Small-scale fluctuations in the membrane conductances and the diameter of dendrites are generally disregarded and spines merely incorporated into the dendritic shaft.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis is a lethal, adult-onset disease characterized by progressive degeneration of motoneurons. Recent data have suggested that the disease could be linked to abnormal development of the motor nervous system. Therefore, we investigated the electrical properties of lumbar motoneurons in an in-vitro neonatal spinal cord preparation isolated from SOD1(G85R) mice, which is a transgenic model of amyotrophic lateral sclerosis.
View Article and Find Full Text PDFAmyotrophic lateral sclerosis (ALS) is a neurodegenerative and fatal human disorder characterized by progressive loss of motor neurons. Transgenic mouse models of ALS are very useful to study the initial mechanisms underlying this neurodegenerative disease. We will focus here on the earlier abnormalities observed in superoxide dismutase 1 (SOD1) mutant mice.
View Article and Find Full Text PDF