Publications by authors named "Boris Kosog"

The synthesis and characterization of uranium(VI) mono(imido) complexes, by the oxidation of corresponding uranium(V) species, are presented. These experimental results, paired with DFT analyses, allow for the comparison of the electronic structure of uranium(VI) mono(oxo) and mono(imido) ligands within a conserved ligand framework and demonstrate that the magnitude of the ground state stabilization derived from the inverse trans-influence (ITI) is governed by the relative charge localization on the multiply bonded atom or group.

View Article and Find Full Text PDF

We present an X-ray absorption near-edge structure (XANES) study of a series of uranium coordination complexes that possess nearly identical first coordination spheres and geometries in a range of oxidation states from U(III) to U(VI). These compounds were obtained through the activation of small molecules, such as ketones, azides, and carbon dioxide, and upon oxidation of a high-valent U(V)≡O to [U(VI)≡O](+). Most of the compounds have been reported previously.

View Article and Find Full Text PDF

The previously reported uranium(III) complex [(((Ad)ArO)(3)N)U(III)(DME)] (1; Ad = adamantane, DME = 1,2-dimethoxyethane) reacts with the terminal bis-alkynes 1,7-octadiyne or 1,6-heptadiyne in C-C-coupling reactions to form the uranium(IV) vinyl complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(1)-1,2-(CH)(2)-cyclohexane)] (2) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2):η(2)-1,2-(CH)(2)-cyclopentane)] (3). With the monoalkynes 1-hexyne or 4-(t)butyl-phenylacetylene, the complexes [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C1):η(1)(C4)-2-(n)Bu-1,3-octadiene)] (4) and [{(((Ad)ArO)(3)N)U(IV)}(2)(μ-η(2)(C4):η(1)(C1)-1,3-di-(p-(t)Bu-phenyl)butadiene))] (5), are formed. These are the first four examples of uranium vinyl complexes that are reported and crystallographically characterized.

View Article and Find Full Text PDF

Oxidation of our previously reported uranium(V) oxo complexes, supported by the chelating ((R)ArO)(3)tacn(3-) ligand system (R = tert-butyl (t-Bu), 1-t-Bu; R = 1-adamantyl (Ad), 1-Ad), yields terminal uranium(VI) oxo complexes [(((R)ArO)(3)tacn)U(VI)(O)]SbF(6) (R = t-Bu, 2-t-Bu; R = Ad, 2-Ad). These complexes differ in their molecular geometry in that 2-t-Bu possesses pseudo-C(s) symmetry in solution and solid state as the terminal oxo ligand lies in the equatorial plane (as defined by the three aryloxide arms of the ligand) in order to accommodate the thermodynamic preference of high-valent uranium oxo complexes to have a σ- and π-donating ligand trans to the oxo (vis-à-vis the ubiquity of the linear UO(2)(2+) moiety). The distortion of the ligand--which stands in contrast to all other complexes of uranium supported by the ((R)ArO)(3)tacn(3-) ligand, including 2-Ad--is most clearly seen in the structures of 2-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)]SbF(6), and 3-t-Bu, [(((t-Bu)ArO)(3)tacn)U(VI)(O)(eq)(OC(O)CF(3))(ax)].

View Article and Find Full Text PDF

The uranium(IV)/uranium(IV) μ-sulfide complex [{(((Ad)ArO)(3)N)U}(2)(μ-S)] reacts with CS(2) to form the trithiocarbonate-bridged complex [{(((Ad)ArO)(3)N)U}(2)(μ-κ(2):κ(2)-CS(3))]. The trithiocarbonate complex can alternatively be formed in low yields from low-valent [(((Ad)ArO)(3)N)U(DME)] through the reductive cleavage of CS(2).

View Article and Find Full Text PDF