Publications by authors named "Boris Kharkov"

Nuclear spin singlet states are often found to allow long-lived storage of nuclear magnetization, which can form the basis of novel applications in spectroscopy, imaging, and in studies of dynamic processes. Precisely how long such polarization remains intact, and which factors affect its lifetime is often difficult to determine and predict. We present a combined experimental/computational study to demonstrate that molecular dynamics simulations and calculations can be used to fully account for the experimentally observed proton singlet lifetimes in ethyl-d-propyl-d-maleate in deuterated chloroform as solvent.

View Article and Find Full Text PDF

Pulsed-field gradient (PFG) NMR is an important tool for characterization of biomolecules and supramolecular assemblies. However, for micrometer-sized objects, such as amyloid fibrils, these experiments become difficult to interpret because in addition to translational diffusion they are also sensitive to rotational diffusion. We have constructed a mathematical theory describing the outcome of PFG NMR experiments on rod-like fibrils.

View Article and Find Full Text PDF

The examination and optimized preparation of nuclear spin singlet order has enabled the development of new types of applications that rely on potentially long-term polarization storage. Lifetimes several orders of magnitude longer than T1 have been observed. The efficient creation of such states relies on special pulse sequences.

View Article and Find Full Text PDF

Direct dipolar spin couplings are informative and sensitive probes for a wide range of dynamic processes and structural properties at atomic, molecular and supramolecular levels in liquid crystals and other anisotropic materials. Usually, heteronuclear 13C-1H dipolar couplings in liquid crystals with natural 13C abundance are measured. Recording 13C-15N NMR dipolar spectra in unlabeled materials is challenging because of the unfavorable combination of two rare isotopes.

View Article and Find Full Text PDF

In this work, optimal control theory was used to design efficient excitation schemes in highly conductive materials, where both the radio frequency field strength and phase vary as a function of penetration depth. A pulse was designed to achieve phase alignment between signals at different depths within the conductor and thus to obtain higher signals from that region. In addition, an efficient suppression pulse was designed by insuring mutual suppression between the signals from various depths in the sample.

View Article and Find Full Text PDF

One of the major challenges in using magnetic resonance imaging (MRI) to study immobile samples, such as solid materials or rigid tissues like bone or ligaments, is that the images appear dark due to these samples' short-lived signals. Although it is well known that narrowband signals can be excited in inhomogeneously-broadened lines, it is less well known that similar effects can be observed in dipolar-broadened systems. These long-lived signals have not been used much, mainly because their description frequently does not match intuition.

View Article and Find Full Text PDF

We investigate conformational dynamics and phase transitions of surfactant molecules confined in the layered galleries of the organo-modified, natural polysilicate clay, magadiite. We have shown that our approach to studying this class of materials is capable of delivering detailed information on the molecular mobility of the confined molecules. From the analysis of the measured heteronuclear dipolar couplings, the orientational order parameters of the C-H bonds along the hydrocarbon chain have been determined.

View Article and Find Full Text PDF