Developing intense, coherent and ultra-fast light sources with nanoscale dimensions is a crucial issue for many applications in nanophotonics. To date, plasmonic nanolasers represent one of the most promising nanophotonic devices capable of this remarkable feature. In the present work we report on the emission properties of two-dimensional Au hexagonal nanodome arrays, fabricated by nanosphere lithography, coupled with a dye liquid solution used as the gain medium.
View Article and Find Full Text PDFIn the quest for new and increasingly efficient photon sources, the engineering of the photonic environment at the subwavelength scale is fundamental for controlling the properties of quantum emitters. A high refractive index particle can be exploited to enhance the optical properties of nearby emitters without decreasing their quantum efficiency, but the relatively modest -factors ( ∼ 5-10) limit the local density of optical states (LDOS) amplification achievable. On the other hand, ultrahigh -factors (up to ∼ 10) have been reported for quasi-BIC modes in all-dielectric nanostructures.
View Article and Find Full Text PDFIn recent years the quest for novel materials possessing peculiar abilities of manipulating light at the nanoscale has been significantly boosted due to the strict demands of advanced nanophotonics and quantum technologies. In this framework radiative decay engineering of quantum emitters is of paramount importance for developing efficient single-photon sources or nanolasers. Hyperbolic metamaterials stand out among the best cutting-edge candidates for photoluminescence control owing to their potentially unlimited photonic density of states and their ability to sustain high-k modes that allow us to strongly enhance the radiative decay rate of quantum light emitters.
View Article and Find Full Text PDFCombining finite elements method electrodynamic simulations and cost-effective and scalable nanofabrication techniques, we carried out a systematic investigation and optimization of the sensing properties of non-interacting gold nanodisk arrays. Such plasmonic nanoarchitectures offer a very effective platform for fast and simple, label-free, optical bio- and chemical-sensing. We varied their main geometrical parameters (diameter and height) to monitor the plasmonic resonance position and to find the configurations that maximize the sensitivity to small layers of an analyte (local sensitivity) or to the variation of the refractive index of an embedding medium (bulk sensitivity).
View Article and Find Full Text PDFThe laser-induced plasmon heating of an ordered array of silver nanoparticles, under continuous illumination with an Ar laser, was probed by rare-earth fluorescence thermometry. The rise in temperature in the samples was monitored by measuring the temperature-sensitive photoluminescent emission of a europium complex (EuTTA) embedded in PMMA thin-films, deposited onto the nanoparticles array. A maximum temperature increase of 19 °C was determined upon resonant illumination with the surface plasmon resonance of the nanoarray at the highest pump Ar laser power (173 mW).
View Article and Find Full Text PDFIn this work we present the study of the ultra-fast dynamics of the nonlinear optical response of a honeycomb array of silver triangular nanoprisms, performed using a femtosecond pulsed laser tuned with the dipolar surface plasmon resonance of the nanoarray. Nonlinear absorption and refraction, and their time-dependence, were explored using the z-scan and time-resolved excite-probe techniques. Nonlinear absorption is shown to change sign with the input irradiance and the behavior was explained on the basis of a three-level model.
View Article and Find Full Text PDFThe aim of this work is to present a potential application of gallium nitride-based optoelectronic devices. By using a laser diode and a photodetector, we designed and demonstrated a free-space compact and lightweight wireless power transfer system, whose efficiency is limited by the efficiency of the receiver. We analyzed the effect of the electrical load, temperature, partial absorption and optical excitation distribution on the efficiency, by identifying heating and band-filling as the most impactful processes.
View Article and Find Full Text PDFOrdered metallic nanoprism arrays have been proposed as novel and versatile systems for the observation of nonlinear effects such as nonlinear absorption. The study of the effect of the local field reinforcement on the fast optical third order nonlinear response around the Surface Plasmon Resonance is of great interest for many plasmonic applications. In this work, silver nanoprism arrays have been synthesized by the nanosphere lithography method.
View Article and Find Full Text PDFThe nonlinear absorption properties of bidimensional arrays of Au-Ag bilayered nanoprisms have been investigated by z-scan measurements as a function of the bimetallic nanoprism composition. A tunable ps laser system was used to excite the ultrafast, electronic nonlinear response matching the laser wavelength with the quadrupolar surface plasmon resonances, in the visible range, of each nanoprism array. Due to the strong electromagnetic field confinement effects at the nanoprism tips, demonstrated by finite element method simulations, these nanosystems proved to have enhanced nonlinear optical properties.
View Article and Find Full Text PDFThe very early steps of Au metal cluster formation in Er-doped silica have been investigated by high-energy resolution fluorescence-detected X-ray absorption spectroscopy (HERFD-XAS). A combined analysis of the near-edge and extended part of the experimental spectra shows that Au cluster nucleation starts from a few Au and O atoms covalently interconnected, likely in the presence of embryonic Au-Au correlation. The first Au clusters, characterized by a well defined Au-Au coordination distance, form upon 400 °C inert annealing.
View Article and Find Full Text PDFThe occurrence of a very efficient non-resonant energy transfer process forming ultrasmall Au-Ag nanoalloy clusters and Er(3+) ions is investigated in silica. The enhancement of the room temperature Er(3+) emission efficiency by an order of magnitude is achieved by coupling rare-earth ions to molecule-like (Au(x)Ag(1-x))N alloy nanoclusters with N = 10-15 atoms and x = 0.6 obtained by optimized sequential ion implantation on Er-implanted silica.
View Article and Find Full Text PDFPlasmonic sensors based on ordered arrays of nanoprisms are optimized in terms of their geometric parameters like size, height, aspect ratio for Au, Ag or Au0.5-Ag0.5 alloy to be used in the visible or near IR spectral range.
View Article and Find Full Text PDFSub-nanometric Au nanoclusters are known to act as very efficient sensitizers for the luminescent emission of Er(3+) ions in silica through a non-resonant broad-band energy-transfer mechanism. In the present work the energy-transfer process is investigated in detail by room temperature photoluminescence characterization of Er and Au co-implanted silica systems in which a different degree of coupling between Er(3+) ions and Au nanoclusters is obtained. The results allow us to definitely demonstrate the short-range nature of the interaction in agreement with non-radiative energy-transfer mechanisms.
View Article and Find Full Text PDFUltra-small molecule-like AuN nanoclusters made by a number of atoms N less than 30 were produced by ion implantation in silica substrates. Their room temperature photoluminescence properties in the visible and near-infrared range have been investigated and correlated with the Er sensitization effects observed in Er-Au co-implanted samples. The intense photoluminescence emission under 488 nm laser excitation occurs in three different spectral regions around 750 nm (band A), 980 nm (band B) and 1150 nm (band C) as a consequence of the formation of discrete energy levels in the electronic structure of the molecule-like AuN nanoclusters.
View Article and Find Full Text PDF