We propose a complete-search algorithm for solving a class of non-convex, possibly infinite-dimensional, optimization problems to global optimality. We assume that the optimization variables are in a bounded subset of a Hilbert space, and we determine worst-case run-time bounds for the algorithm under certain regularity conditions of the cost functional and the constraint set. Because these run-time bounds are independent of the number of optimization variables and, in particular, are valid for optimization problems with infinitely many optimization variables, we prove that the algorithm converges to an -suboptimal global solution within finite run-time for any given termination tolerance .
View Article and Find Full Text PDFThis article presents an arithmetic for the computation of Chebyshev models for factorable functions and an analysis of their convergence properties. Similar to Taylor models, Chebyshev models consist of a pair of a multivariate polynomial approximating the factorable function and an interval remainder term bounding the actual gap with this polynomial approximant. Propagation rules and local convergence bounds are established for the addition, multiplication and composition operations with Chebyshev models.
View Article and Find Full Text PDFBioprocess Biosyst Eng
February 2013
The optimal design and operation of dynamic bioprocesses gives in practice often rise to optimisation problems with multiple and conflicting objectives. As a result typically not a single optimal solution but a set of Pareto optimal solutions exist. From this set of Pareto optimal solutions, one has to be chosen by the decision maker.
View Article and Find Full Text PDF