Publications by authors named "Boris Fain"

Article Synopsis
  • The study models the autoionization of water by analyzing the free energy of hydration for key ion species like hydroxide (OH), hydronium (HO), and Zundel (HO) ions, using both bonded and nonbonded interaction models.* -
  • The models accurately reflect quantum mechanical energies to within 1%, allowing for precise calculations of free energies and atomization energies.* -
  • The results indicate that the hydronium ion and its hydrated form, the Eigen cation, are the primary species involved in the autoionization of water, with calculated pH values closely matching experimental data.*
View Article and Find Full Text PDF

We incorporate nuclear quantum effects (NQE) in condensed matter simulations by introducing short-range neural network (NN) corrections to the ab initio fitted molecular force field ARROW. Force field NN corrections are fitted to average interaction energies and forces of molecular dimers, which are simulated using the Path Integral Molecular Dynamics (PIMD) technique with restrained centroid positions. The NN-corrected force field allows reproduction of the NQE for computed liquid water and methane properties such as density, radial distribution function (RDF), heat of evaporation (HVAP), and solvation free energy.

View Article and Find Full Text PDF

We present a formalism of a neural network encoding bonded interactions in molecules. This intramolecular encoding is consistent with the models of intermolecular interactions previously designed by this group. Variants of the encoding fed into a corresponding neural network may be used to economically improve the representation of torsional degrees of freedom in any force field.

View Article and Find Full Text PDF

A key goal of molecular modeling is the accurate reproduction of the true quantum mechanical potential energy of arbitrary molecular ensembles with a tractable classical approximation. The challenges are that analytical expressions found in general purpose force fields struggle to faithfully represent the intermolecular quantum potential energy surface at close distances and in strong interaction regimes; that the more accurate neural network approximations do not capture crucial physics concepts, e.g.

View Article and Find Full Text PDF

Protein-ligand binding free-energy calculations using molecular dynamics (MD) simulations have emerged as a powerful tool for in silico drug design. Here, we present results obtained with the ARROW force field (FF)─a multipolar polarizable and physics-based model with all parameters fitted entirely to high-level ab initio quantum mechanical (QM) calculations. ARROW has already proven its ability to determine solvation free energy of arbitrary neutral compounds with unprecedented accuracy.

View Article and Find Full Text PDF

The main goal of molecular simulation is to accurately predict experimental observables of molecular systems. Another long-standing goal is to devise models for arbitrary neutral organic molecules with little or no reliance on experimental data. While separately these goals have been met to various degrees, for an arbitrary system of molecules they have not been achieved simultaneously.

View Article and Find Full Text PDF

In many important processes in chemistry, physics, and biology the nuclear degrees of freedom cannot be described using the laws of classical mechanics. At the same time, the vast majority of molecular simulations that employ wide-coverage force fields treat atomic motion classically. In light of the increasing desire for and accelerated development of quantum mechanics (QM)-parameterized interaction models, we reexamine whether the classical treatment is sufficient for a simple but crucial chemical species: alkanes.

View Article and Find Full Text PDF

We present the performance of blind predictions of water-cyclohexane distribution coefficients for 53 drug-like compounds in the SAMPL5 challenge by three methods currently in use within our group. Two of them utilize QMPFF3 and ARROW, polarizable force-fields of varying complexity, and the third uses the General Amber Force-Field (GAFF). The polarizable FF's are implemented in an in-house MD package, Arbalest.

View Article and Find Full Text PDF

Background: A key component in protein structure prediction is a scoring or discriminatory function that can distinguish near-native conformations from misfolded ones. Various types of scoring functions have been developed to accomplish this goal, but their performance is not adequate to solve the structure selection problem. In addition, there is poor correlation between the scores and the accuracy of the generated conformations.

View Article and Find Full Text PDF

We present a method for designing a funnel-shaped free-energy surface that reproducibly assembles secondary structure elements of proteins into their native conformations from a random extended configuration. Assuming a priori knowledge of secondary structure, our method can design a funnel-shaped surface for folding of alpha, beta, and alphabeta structures individually. We design energy surfaces that fold up to five unrelated sequences with the same energy parameters.

View Article and Find Full Text PDF

We introduce a method of looking at, analyzing, and comparing protein structures. The topology of a protein is captured by 30 numbers inspired by Vassiliev knot invariants. To illustrate the simplicity and power of this topological approach, we construct a measure (scaled Gauss metric, SGM) of similarity of protein shapes.

View Article and Find Full Text PDF

We describe the construction of a scoring function designed to model the free energy of protein folding. An optimization technique is used to determine the best functional forms of the hydrophobic, residue-residue and hydrogen-bonding components of the potential. The scoring function is expanded by use of Chebyshev polynomials, the coefficients of which are determined by minimizing the score, in units of standard deviation, of native structures in the ensembles of alternate decoy conformations.

View Article and Find Full Text PDF