The flagellar movement of the mammalian sperm plays a crucial role in fertilization. In the female reproductive tract, human spermatozoa undergo a process called capacitation which promotes changes in their motility. Only capacitated spermatozoa may be hyperactivated and only those that transition to hyperactivated motility are capable of fertilizing the egg.
View Article and Find Full Text PDFCardiovascular diseases related to the right side of the heart, such as Pulmonary Hypertension, are some of the leading causes of death among the Mexican (and worldwide) population. To avoid invasive techniques such as catheterizing the heart, improving the segmenting performance of medical echocardiographic systems can be an option to early detect diseases related to the right-side of the heart. While current medical imaging systems perform well segmenting automatically the left side of the heart, they typically struggle segmenting the right-side cavities.
View Article and Find Full Text PDFHuman spermatozoa must swim through the female reproductive tract, where they undergo a series of biochemical and biophysical reactions called capacitation, a necessary step to fertilize the egg. Capacitation promotes changes in the motility pattern. Historically, a two-dimensional analysis has been used to classify sperm motility and clinical fertilization studies.
View Article and Find Full Text PDFComput Methods Programs Biomed
November 2021
Background: Left and right ventricle automatic segmentation remains one of the more important tasks in computed aided diagnosis. Active contours have shown to be efficient for this task, however they often require user interaction to provide the initial position, which drives the tool substantially dependent on a prior knowledge and a manual process.
Methods: We propose to overcome this limitation with a Convolutional Neural Network (CNN) to reach the assumed target locations.
Computer vision and artificial intelligence applications in medicine are becoming increasingly important day by day, especially in the field of image technology. In this paper we cover different artificial intelligence advances that tackle some of the most important worldwide medical problems such as cardiology, cancer, dermatology, neurodegenerative disorders, respiratory problems, and gastroenterology. We show how both areas have resulted in a large variety of methods that range from enhancement, detection, segmentation and characterizations of anatomical structures and lesions to complete systems that automatically identify and classify several diseases in order to aid clinical diagnosis and treatment.
View Article and Find Full Text PDFHeart diseases are the most important causes of death in the world and over the years, thestudy of cardiac movement has been carried out mainly in two dimensions, however, it is important toconsider that the deformations due to the movement of the heart occur in a three-dimensional space.The 3D + t analysis allows to describe most of the motions of the heart, for example, the twistingmotion that takes place on every beat cycle that allows us identifying abnormalities of the heartwalls. Therefore, it is necessary to develop algorithms that help specialists understand the cardiacmovement.
View Article and Find Full Text PDFAnalysis of cardiac images is a fundamental task to diagnose heart problems. Left ventricle (LV) is one of the most important heart structures used for cardiac evaluation. In this work, we propose a novel 3D hierarchical multiscale segmentation method based on a local active contour (AC) model and the Hermite transform (HT) for LV analysis in cardiac magnetic resonance (MR) and computed tomography (CT) volumes in short axis view.
View Article and Find Full Text PDFIn recent years, computed tomography (CT) has become a standard technique in cardiac imaging because it provides detailed information that may facilitate the diagnosis of the conditions that interfere with correct heart function. However, CT-based cardiac diagnosis requires manual segmentation of heart cavities, which is a difficult and time-consuming task. Thus, in this paper, we propose a novel technique to segment endocardium and epicardium boundaries based on a 2D approach.
View Article and Find Full Text PDFObjective: Fetal echocardiographic analysis is essential for detecting cardiac defects at early gestational ages. Fetal cardiac function can be assessed by performing some measurements regarding the dimension and shape of the heart cavities. In this work we propose an automatic segmentation method applied to the analysis of the left ventricle in fetal echocardiography.
View Article and Find Full Text PDFThe following paper evaluates a watermark algorithm designed for digital images by using a perceptive mask and a normalization process, thus preventing human eye detection, as well as ensuring its robustness against common processing and geometric attacks. The Hermite transform is employed because it allows a perfect reconstruction of the image, while incorporating human visual system properties; moreover, it is based on the Gaussian functions derivates. The applied watermark represents information of the digital image proprietor.
View Article and Find Full Text PDFPurpose: The left ventricle and the myocardium are two of the most important parts of the heart used for cardiac evaluation. In this work a novel framework that combines two methods to isolate and display functional characteristics of the heart using sequences of cardiac computed tomography (CT) is proposed. A shape extraction method, which includes a new segmentation correction scheme, is performed jointly with a motion estimation approach.
View Article and Find Full Text PDFPollen identification is required in different scenarios such as prevention of allergic reactions, climate analysis or apiculture. However, it is a time-consuming task since experts are required to recognize each pollen grain through the microscope. In this study, we performed an exhaustive assessment on the utility of texture analysis for automated characterisation of pollen samples.
View Article and Find Full Text PDFChronic obstructive pulmonary disease (COPD) is a progressive and irreversible lung condition typically related to emphysema. It hinders air from passing through airpaths and causes that alveolar sacs lose their elastic quality. Findings of COPD may be manifested in a variety of computed tomography (CT) studies.
View Article and Find Full Text PDFThe aim of this paper is to understand how to measure the VO2 and VCO2 variabilities in indirect calorimetry (IC) since we believe they can explain the high variation in the resting energy expenditure (REE) estimation. We propose that variabilities should be separately measured from the VO2 and VCO2 averages to understand technological differences among metabolic monitors when they estimate the REE. To prove this hypothesis the mixing chamber (MC) and the breath-by-breath (BbB) techniques measured the VO2 and VCO2 averages and their variabilities.
View Article and Find Full Text PDFAn essential and indispensable component of automated microscopy framework is the automatic focusing system, which determines the in-focus position of a given field of view by searching the maximum value of a focusing function over a range of z-axis positions. The focus function and its computation time are crucial to the accuracy and efficiency of the system. Sixteen focusing algorithms were analyzed for histological and histopathological images.
View Article and Find Full Text PDFMicroscopy images must be acquired at the optimal focal plane for the objects of interest in a scene. Although manual focusing is a standard task for a trained observer, automatic systems often fail to properly find the focal plane under different microscope imaging modalities such as bright field microscopy or phase contrast microscopy. This article assesses several autofocus algorithms applied in the study of fluorescence-labeled tuberculosis bacteria.
View Article and Find Full Text PDFThe efficient representation of local differential structure at various resolutions has been a matter of great interest for adaptive image processing and computer vision tasks. In this paper, we derive a multiscale model to represent natural images based on the scale-space representation: a model that has an inspiration in the human visual system. We first derive the one-dimensional case and then extend the results to two and three dimensions.
View Article and Find Full Text PDF