Hypoxia-induced proliferation of neural stem cells has a crucial role in brain development. In the brain of , the optic lobe exhibits progressive hypoxia during larval development. Here, we investigate an alternative oxygen-sensing mechanism within this brain compartment, distinct from the canonical hypoxia signaling pathway mediated by HIF.
View Article and Find Full Text PDFCUTie2 is a FRET-based cGMP biosensor tested so far only in cells. To expand its use to multicellular organisms we generated two transgenic strains that express the biosensor in a tissue-dependent manner. CUTie2 expression and subcellular localization was verified by confocal microscopy.
View Article and Find Full Text PDFMitotic divisions depend on the timely assembly and proper orientation of the mitotic spindle. Malfunctioning of these processes can considerably delay mitosis, thereby compromising tissue growth and homeostasis, and leading to chromosomal instability. Loss of functional Mms19 drastically affects the growth and development of mitotic tissues in Drosophila larvae and we now demonstrate that Mms19 is an important factor that promotes spindle and astral microtubule (MT) growth, and MT stability and bundling.
View Article and Find Full Text PDFEnvironmental factors such as the availability of oxygen are instructive cues that regulate stem cell maintenance and differentiation. We used a genetically encoded biosensor to monitor the hypoxic state of neural cells in the larval brain of The biosensor reveals brain compartment and cell-type specific levels of hypoxia. The values correlate with differential tracheolation that is observed throughout development between the central brain and the optic lobe.
View Article and Find Full Text PDFMethods Mol Biol
November 2020
Live cell imaging gives valuable insights into the dynamic biological processes within and between cells. An important aspect of live cell imaging is to keep the cells under best physiological condition and to prevent abnormal cellular behavior, which might be caused by phototoxicity during microscopy. In this chapter we describe a protocol to visualize division patterns of neural stem cells in live whole mount brains of Drosophila larvae.
View Article and Find Full Text PDFAfter a peripheral nerve lesion, distal ends of injured axons disintegrate into small fragments that are subsequently cleared by Schwann cells and later by macrophages. Axonal debris clearing is an early step of the repair process that facilitates regeneration. We show here that Schwann cells promote distal cut axon disintegration for timely clearing.
View Article and Find Full Text PDFBackground: Neural stem cells generate all of the neurons and glial cells in the central nervous system, both during development and in the adult to maintain homeostasis. In the Drosophila optic lobe, neuroepithelial cells progress through two transient progenitor states, PI and PII, before transforming into neuroblasts. Here we analyse the role of Notch signalling in the transition from neuroepithelial cells to neuroblasts.
View Article and Find Full Text PDFLasting changes in gene expression are critical for the formation of long-term memories (LTMs), depending on the conserved CrebB transcriptional activator. While requirement of distinct neurons in defined circuits for different learning and memory phases have been studied in detail, only little is known regarding the gene regulatory changes that occur within these neurons. We here use the fruit fly as powerful model system to study the neural circuits of CrebB-dependent appetitive olfactory LTM.
View Article and Find Full Text PDFThe central nervous system develops from monolayered neuroepithelial sheets. In a first step patterning mechanisms subdivide the seemingly uniform epithelia into domains allowing an increase of neuronal diversity in a tightly controlled spatial and temporal manner. In Drosophila, neuroepithelial patterning of the embryonic optic placode gives rise to the larval eye primordium, consisting of two photoreceptor (PR) precursor types (primary and secondary), as well as the optic lobe primordium, which during larval and pupal stages develops into the prominent optic ganglia.
View Article and Find Full Text PDFCells experience different oxygen concentrations depending on location, organismal developmental stage, and physiological or pathological conditions. Responses to reduced oxygen levels (hypoxia) rely on the conserved hypoxia-inducible factor 1 (HIF-1). Understanding the developmental and tissue-specific responses to changing oxygen levels has been limited by the lack of adequate tools for monitoring HIF-1 To visualise and analyse HIF-1 dynamics in , we used a hypoxia biosensor consisting of GFP fused to the oxygen-dependent degradation domain (ODD) of the HIF-1 homologue Sima.
View Article and Find Full Text PDFCentrosome asymmetry has been implicated in stem cell fate maintenance in both flies and vertebrates, but the underlying molecular mechanisms are incompletely understood. Here, we report that loss of CG7337, the fly ortholog of WDR62, compromises interphase centrosome asymmetry in fly neural stem cells (neuroblasts). Wdr62 maintains an active interphase microtubule-organizing center (MTOC) by stabilizing microtubules (MTs), which are necessary for sustained recruitment of Polo/Plk1 to the pericentriolar matrix (PCM) and downregulation of Pericentrin-like protein (Plp).
View Article and Find Full Text PDFThe pathogenesis of peripheral neuropathies in adults is linked to maintenance mechanisms that are not well understood. Here, we elucidate a novel critical maintenance mechanism for Schwann cell (SC)-axon interaction. Using mouse genetics, ablation of the transcriptional regulators histone deacetylases 1 and 2 (HDAC1/2) in adult SCs severely affected paranodal and nodal integrity and led to demyelination/remyelination.
View Article and Find Full Text PDFBrain development goes through phases of proliferative growth and differentiation to ensure the formation of correct number and variety of neurons. How and when naïve neuroepithelial cells decide to enter a differentiation pathway remains poorly understood. In the Drosophila visual system, four optic ganglia emerge from neuroepithelia of the inner (IPC) and outer (OPC) proliferation centers.
View Article and Find Full Text PDFMethods Mol Biol
April 2014
The Drosophila visual system is an excellent model system to study the switch from proliferating to differentiating neural stem cells. In the developing larval optic lobe, symmetrically dividing neuroepithelial cells transform to asymmetrically dividing neuroblasts in a highly ordered and sequential manner. This chapter presents a protocol to visualize neural stem cell types in the Drosophila optic lobe by fluorescence confocal microscopy.
View Article and Find Full Text PDFCell-type-specific transcriptional profiling often requires the isolation of specific cell types from complex tissues. We have developed "TaDa," a technique that enables cell-specific profiling without cell isolation. TaDa permits genome-wide profiling of DNA- or chromatin-binding proteins without cell sorting, fixation, or affinity purification.
View Article and Find Full Text PDFCell culture systems are widely used for molecular, genetic and biochemical studies. Primary cell cultures of animal tissues offer the advantage that specific cell types can be studied in vitro outside of their normal environment. We provide a detailed protocol for generating primary neural cell cultures derived from larval brains of Drosophila melanogaster.
View Article and Find Full Text PDFIn Drosophila, most neurogenetic research is carried out in vivo. Mammalian research demonstrates that primary cell culture techniques provide a powerful model to address cell autonomous and non-autonomous processes outside their endogenous environment. We developed a cell culture system in Drosophila using wildtype and genetically manipulated primary neural tissue for long-term observations.
View Article and Find Full Text PDFStem cells proliferate through symmetric division or self-renew through asymmetric division whilst generating differentiating cell types. The balance between symmetric and asymmetric division requires tight control to either expand a stem cell pool or to generate cell diversity. In the Drosophila optic lobe, symmetrically dividing neuroepithelial cells transform into asymmetrically dividing neuroblasts.
View Article and Find Full Text PDFThe proper balance between symmetric and asymmetric stem cell division is crucial both to maintain a population of stem cells and to prevent tumorous overgrowth. Neural stem cells in the Drosophila optic lobe originate within a polarised neuroepithelium, where they divide symmetrically. Neuroepithelial cells are transformed into asymmetrically dividing neuroblasts in a precisely regulated fashion.
View Article and Find Full Text PDFBackground: The production of new neurons during adulthood and their subsequent integration into a mature central nervous system have been shown to occur in all vertebrate species examined to date. However, the situation in insects is less clear and, in particular, it has been reported that there is no proliferation in the Drosophila adult brain.
Results: We report here, using clonal analysis and 5'-bromo-2'-deoxyuridine (BrdU) labelling, that cell proliferation does occur in the Drosophila adult brain.
Asymmetric cell division is an important and conserved strategy in the generation of cellular diversity during animal development. Many of our insights into the underlying mechanisms of asymmetric cell division have been gained from Drosophila, including the establishment of polarity, orientation of mitotic spindles and segregation of cell fate determinants. Recent studies are also beginning to reveal the connection between the misregulation of asymmetric cell division and cancer.
View Article and Find Full Text PDFDrosophila neuroblasts are similar to mammalian neural stem cells in their ability to self-renew and to produce many different types of neurons and glial cells. In the past two decades, great advances have been made in understanding the molecular mechanisms underlying embryonic neuroblast formation, the establishment of cell polarity and the temporal regulation of cell fate. It is now a challenge to connect, at the molecular level, the different cell biological events underlying the transition from neural stem cell maintenance to differentiation.
View Article and Find Full Text PDFBackground: The choice of a stem cell to divide symmetrically or asymmetrically has profound consequences for development and disease. Unregulated symmetric division promotes tumor formation, whereas inappropriate asymmetric division affects organ morphogenesis. Despite its importance, little is known about how spindle positioning is regulated.
View Article and Find Full Text PDFThe correct targeting of photoreceptor neurons (R-cells) in the developing Drosophila visual system requires multiple guidance systems in the eye-brain complex as well as the precise organization of the target area. Here, we report that the egghead (egh) gene, encoding a glycosyltransferase, is required for a compartment boundary between lamina glia and lobula cortex, which is necessary for appropriate R1-R6 innervation of the lamina. In the absence of egh, R1-R6 axons form a disorganized lamina plexus and some R1-R6 axons project abnormally to the medulla instead of the lamina.
View Article and Find Full Text PDFBackground: Mutations and gene expression alterations in brain tumors have been extensively investigated, however the causes of brain tumorigenesis are largely unknown. Animal models are necessary to correlate altered transcriptional activity and tumor phenotype and to better understand how these alterations cause malignant growth. In order to gain insights into the in vivo transcriptional activity associated with a brain tumor, we carried out genome-wide microarray expression analyses of an adult brain tumor in Drosophila caused by homozygous mutation in the tumor suppressor gene brain tumor (brat).
View Article and Find Full Text PDF