The development of tumor therapies based on the activation of antitumor immunity requires tumor models that are highly immunogenic. The immunologic response to fluorescent proteins, green fluorescent protein (GFP), or enhanced GFP (EGFP) was demonstrated in different cancer models. However, for live animal imaging, red and far-red fluorescent proteins are preferable, but their immunogenicity has not been studied.
View Article and Find Full Text PDFThe purpose of this study was to evaluate photobleaching of the genetically encoded photosensitizer KillerRed in tumor spheroids upon pulsed and continuous wave (CW) laser irradiation and to analyze the mechanisms of cancer cell death after the treatment. We observed the light-dose dependent mechanism of KillerRed photobleaching over a wide range of fluence rates. Loss of fluorescence was limited to 80% at light doses of 150 J/cm(2) and more.
View Article and Find Full Text PDFBackground: Genetically encoded photosensitizers are a promising optogenetic instrument for light-induced production of reactive oxygen species in desired locations within cells in vitro or whole body in vivo. Only two such photosensitizers are currently known, GFP-like protein KillerRed and FMN-binding protein miniSOG. In this work we studied phototoxic effects of miniSOG in cancer cells.
View Article and Find Full Text PDF