The development of photoelectrode materials for efficient water splitting using solar energy is a crucial research topic for green hydrogen production. These materials need to be abundant, fabricated on a large scale, and at low cost. In this context, hematite is a promising material that has been widely studied.
View Article and Find Full Text PDFNickel nanopillar arrays were electrodeposited onto silicon substrates using porous alumina membranes as a template. The characterization of the samples was done by scanning electron microscopy, X-ray diffraction, and alternating force gradient magnetometry. Ni nanostructures were directly grown on Si by galvanostatic and potentiostatic electrodeposition techniques in three remarkable charge transfer configurations.
View Article and Find Full Text PDFFourth generation polyamidoamine dendrimer (PAMAM, G4) modified with fluorescein units (F) at the periphery and Pt nanoparticles stabilized by L-ascorbate were prepared. These dendrimers modified with hydrophobic fluorescein were used to achieve self-assembling structures, giving rise to the formation of nanoaggregates in water. The photoactive fluorescein units were mainly used as photosensitizer units in the process of the catalytic photoreduction of water propitiated by light.
View Article and Find Full Text PDFWe report on the use of flow injection analysis with amperometric detection (FIA-EC) to evaluate the potential of using diamond electrodes for the analysis of three estrogenic compounds: estrone, 17-β-estradiol, and estriol. Amperometric detection was performed using a cathodically pretreated boron-doped diamond electrode that offered low background current, relatively low limits of detection, and good response reproducibility and stability. For all three compounds, response linearity was observed over the concentration range tested, 0.
View Article and Find Full Text PDFThe electrochemical pretreatment of diamond microelectrodes was investigated for the purpose of learning how an anodic, cathodic or a combined anodic + cathodic polarization affects the charge-transfer kinetics for two surface-sensitive redox systems: ferri/ferrocyanide and serotonin (5-hydroxytryptamine, 5-HT). The pretreatments were performed in 0.5 mol L(-1) H2SO4.
View Article and Find Full Text PDF