A self-generation of chaotic dissipative spin-wave multisoliton complexes has been observed experimentally. Localized in time, these patterns are formed in a passively Q-switched and mode-locked magnetic film feedback ring due to the competing three- and four-wave nonlinear spin-wave interactions. Such competition induces a modulation instability that leads to the formation of incoherent one-color four-wave bound solitons embedded in chaotic three-wave solitonlike pulses.
View Article and Find Full Text PDFIn this Letter, we report for the first time on the experimental observation of the generalized synchronization regime in the microwave electronic systems, namely, in the multicavity klystron generators. A new approach devoted to the generalized synchronization detection has been developed. The experimental observations are in the excellent agreement with the results of numerical simulation.
View Article and Find Full Text PDFDirect in vivo visualization, in full atomic detail, of the microbial cell wall and its stress-bearing structural architecture remains one of the prime challenges in microbiology. In the meantime, molecular modeling can provide a framework for explaining and predicting mechanisms involved in morphogenesis, bacterial cell growth and cell division, during which the wall and its major structural component--murein--have to protect the cell from osmotic pressure and multiple tensile forces. Here, we illustrate why the scaffold concept of murein architecture provides a more comprehensive representation of bacterial cell wall physiology than previous models.
View Article and Find Full Text PDFThe recently described scaffold model of murein architecture depicts the gram-negative bacterial cell wall as a gel-like matrix composed of cross-linked glycan strands oriented perpendicularly to the plasma membrane while peptide bridges adopt a parallel orientation (B. A. Dmitriev, F.
View Article and Find Full Text PDFAlthough the chemical structure and physical properties of peptidoglycan have been elucidated for some time, the precise three-dimensional organization of murein has remained elusive. Earlier published computer simulations of the bacterial murein architecture modeled peptidoglycan strands in either a regular (D. Pink, J.
View Article and Find Full Text PDF