Proc Natl Acad Sci U S A
July 2024
We present a renormalization group (RG) analysis of the problem of Anderson localization on a random regular graph (RRG) which generalizes the RG of Abrahams, Anderson, Licciardello, and Ramakrishnan to infinite-dimensional graphs. The RG equations necessarily involve two parameters (one being the changing connectivity of subtrees), but we show that the one-parameter scaling hypothesis is recovered for sufficiently large system sizes for both eigenstates and spectrum observables. We also explain the nonmonotonic behavior of dynamical and spectral quantities as a function of the system size for values of disorder close to the transition, by identifying two terms in the beta function of the running fractal dimension of different signs and functional dependence.
View Article and Find Full Text PDFWe use the Toda chain model to demonstrate that numerical simulation of integrable Hamiltonian dynamics using time discretization destroys integrability and induces dynamical chaos. Specifically, we integrate this model with various symplectic integrators parametrized by the time step τ and measure the Lyapunov time TΛ (inverse of the largest Lyapunov exponent Λ). A key observation is that TΛ is finite whenever τ is finite but diverges when τ→0.
View Article and Find Full Text PDFNear a quantum-critical point in a metal strong fermion-fermion interaction mediated by a soft collective boson gives rise to incoherent, non-Fermi liquid behavior. It also often gives rise to superconductivity which masks the non-Fermi liquid behavior. We analyze the interplay between the tendency to pairing and fermionic incoherence for a set of quantum-critical models with effective dynamical interaction between low-energy fermions.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2016
We consider the many-body localization-delocalization transition for strongly interacting one-dimensional disordered bosons and construct the full picture of finite temperature behavior of this system. This picture shows two insulator-fluid transitions at any finite temperature when varying the interaction strength. At weak interactions, an increase in the interaction strength leads to insulator [Formula: see text] fluid transition, and, for large interactions, there is a reentrance to the insulator regime.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
January 2016
Strictly speaking, the laws of the conventional statistical physics, based on the equipartition postulate [Gibbs J W (1902) Elementary Principles in Statistical Mechanics, developed with especial reference to the rational foundation of thermodynamics] and ergodicity hypothesis [Boltzmann L (1964) Lectures on Gas Theory], apply only in the presence of a heat bath. Until recently this restriction was believed to be not important for real physical systems because a weak coupling to the bath was assumed to be sufficient. However, this belief was not examined seriously until recently when the progress in both quantum gases and solid-state coherent quantum devices allowed one to study the systems with dramatically reduced coupling to the bath.
View Article and Find Full Text PDFBosons with finite lifetime exhibit condensation and lasing when their influx exceeds the lasing threshold determined by the dissipative losses. In general, different one-particle states decay differently, and the bosons are usually assumed to condense in the state with the longest lifetime. Interaction between the bosons partially neglected by such an assumption can smear the lasing threshold into a threshold domain--a stable lasing many-body state exists within certain intervals of the bosonic influxes.
View Article and Find Full Text PDFWe study a quantum quench in a 1D system possessing Luttinger liquid (LL) and Mott insulating ground states before and after the quench, respectively. We show that the quench induces power law amplification in time of any particle density inhomogeneity in the initial LL ground state. The scaling exponent is set by the fractionalization of the LL quasiparticle number relative to the insulator.
View Article and Find Full Text PDFUnderstanding NP-complete problems is a central topic in computer science (NP stands for nondeterministic polynomial time). This is why adiabatic quantum optimization has attracted so much attention, as it provided a new approach to tackle NP-complete problems using a quantum computer. The efficiency of this approach is limited by small spectral gaps between the ground and excited states of the quantum computer's Hamiltonian.
View Article and Find Full Text PDFWe argue that giant jumps of current at finite voltages observed in disordered films of InO, TiN, and YSi manifest a bistability caused by the overheating of electrons. One of the stable states is overheated and thus low resistive, while the other, high-resistive state is heated much less by the same voltage. The bistability occurs provided that cooling of electrons is inefficient and the temperature dependence of the equilibrium resistance R(T) is steep enough.
View Article and Find Full Text PDFWe study finite-size effects in superconducting metallic grains and determine the BCS order parameter and the low energy excitation spectrum in terms of the size and shape of the grain. Our approach combines the BCS self-consistency condition, a semiclassical expansion for the spectral density and interaction matrix elements, and corrections to the BCS mean field. In chaotic grains mesoscopic fluctuations of the matrix elements lead to a smooth dependence of the order parameter on the excitation energy.
View Article and Find Full Text PDFTransport in undoped graphene is related to percolating current patterns in the networks of n- and p-type regions reflecting the strong bipolar charge density fluctuations. Finite transparency of the p-n junctions is vital in establishing the macroscopic conductivity. We propose a random resistor network model to analyze scaling dependencies of the conductance on the doping and disorder, the quantum magnetoresistance and the corresponding dephasing rate.
View Article and Find Full Text PDFWe determine the limiting dynamics of a fermionic condensate following a sudden perturbation for various initial conditions. Possible initial states of the condensate fall into two classes. In the first case, the order parameter asymptotes to a constant value.
View Article and Find Full Text PDFA theoretical interpretation of the recent experiments of Astafiev et al. on the T1-relaxation rate in Josephson charge qubits is proposed. The experimentally observed reproducible nonmonotonic dependence of T1 on the splitting E(J) of the qubit levels suggests further specification of the previously proposed models of the background charge noise.
View Article and Find Full Text PDFDephasing of one-particle states in closed quantum dots is analyzed within the framework of random matrix theory and the master equation. The combination of this analysis with recent experiments on the magnetoconductance allows, for the first time, the evaluation of the dephasing times of closed quantum dots. These dephasing times turn out to be dependent on the mean level spacing and significantly enhanced as compared with the case of open dots.
View Article and Find Full Text PDF