Biomicrofluidics
December 2024
Drug delivery technologies, which are a crucial area of research in the field of cell biology, aim to actively or passively deliver drugs to target cells to enhance therapeutic efficacy and minimize off-target effects. In recent years, with advances in drug development, particularly, the increasing demand for macromolecular drugs (e.g.
View Article and Find Full Text PDFOrgan-on-a-chip, an in vitro biomimetic microsystem that enables precise regulation and real-time observation of the cell microenvironment, has the potential to become a powerful platform for recapitulating the real microenvironment of organs in vitro. Microenvironmental factors, such as living cells, three-dimensional (3D) culture, tissue-tissue interfaces, and biomechanical factors, are important cues in the construction of biomimetic microsystems. It is important to provide an appropriate 3D culture environment for living cells to grow.
View Article and Find Full Text PDFAnti-counterfeiting technology has always been a key issue in the field of information security. Physical Unclonable Function (PUF) labels, which are random patterns produced by a stochastic process, emerge as an effective anti-counterfeiting strategy due to the inherent randomness of their physical patterns. In this study, we developed a high-throughput droplet array generation technique based on surface tension confinement to prepare perovskite crystal films with controllable shapes and sizes.
View Article and Find Full Text PDFFlexible actuation materials play a crucial role in biomimetic robots. Seeking methods to enhance actuation and functionality is one of the directions in which actuators strive to meet the high-performance and diverse requirements of environmental conditions. Herein, by utilizing the method of adsorbing N-doped carbon dots (NCDs) onto SiO to form clusters of functional particles, a NCDs@SiO/PDMS elastomer was prepared and its combined optical and electrical co-stimulation properties were effectively harnessed to develop a biomimetic crawling robot resembling (firefly).
View Article and Find Full Text PDFPhotodetectors with long detection distances and fast response are important media in constructing a non-contact human-machine interface for the Masterly Internet of Things (MIT). All-inorganic perovskites have excellent optoelectronic performance with high moisture and oxygen resistance, making them one of the promising candidates for high-performance photodetectors, but a simple, low-cost and reliable fabrication technology is urgently needed. Here, a dual-function laser etching method is developed to complete both the lyophilic split-ring structure and electrode patterning.
View Article and Find Full Text PDFAn ideal anti-counterfeiting label not only needs to be unclonable and accurate but also must consider cost and efficiency. But the traditional physical unclonable function (PUF) recognition technology must match all the images in a database one by one. The matching time increases with the number of samples.
View Article and Find Full Text PDFThe level of hardware or information security can be increased by applying physical unclonable functions (PUFs), which have a high complexity and unique nonreplicability and are based on random physical patterns generated by nature, to anticounterfeiting and encryption technologies. The preparation of PUFs should be as simple and convenient as possible, while maintaining the high complexity and stability of PUFs to ensure high reliability in use. In this study, an all-inorganic perovskite single-crystal array with a controllable morphology and a random size was prepared by a one-step recrystallization method in a solvent atmosphere to generate all-photonic cryptographic primitives.
View Article and Find Full Text PDF