Publications by authors named "Borhan Albiss"

Introduction: Given the increasing frequency of drug-resistant bacteria and the limited progress in developing new antibiotics, it is necessary to explore new methods of combating microbial infections. Nanoparticles, particularly silver nanoparticles (Ag-NPs), have shown exceptional antibacterial characteristics; however, elevated concentrations of Ag-NPs can produce noticeable levels of toxicity in mammalian cells.

Aim: This study examined the potential synergistic effect of combining a low dosage of Ag-NPs and anti-pseudomonas drugs against (ATCC strain) and eleven clinical isolates from cystic fibrosis patients.

View Article and Find Full Text PDF

Introduction: Hormesis describes an inverse dose-response relationship, whereby a high dose of a toxic compound is inhibitory, and a low dose is stimulatory. This study explores the hormetic response of low concentrations of zinc oxide nanoparticles (ZnO NPs) toward Pseudomonas aeruginosa.

Method: Samples of P.

View Article and Find Full Text PDF

The synthesis and characterization of spinel cobalt-based metal oxides (MCoO) with varying 3d-transition metal ions (Ni, Fe, Cu, and Zn) were explored using a hydrothermal process (140 °C for two hours) to be used as alternative counter electrodes for Pt-free dye-sensitized solar cells (DSSCs). Scanning electron microscopy (SEM) and atomic force microscopy (AFM) revealed distinct morphologies for each metal oxide, such as NiCoO nanosheets, Cu CoO nanoleaves, Fe CoO diamond-like, and Zn CoO hexagonal-like structures. The X-ray diffraction analysis confirmed the cubic spinel structure for the prepared MCoO films.

View Article and Find Full Text PDF

The study highlighted the potential of sesame seed coat (SSC), typically discarded during sesame paste processing, as a valuable resource for valorization through extracting bioactive compounds. It examined the phenolic composition and antioxidant activity of SSC, and evaluated its antibacterial properties against foodborne pathogens such as O157:H7, and Typhimurium. Additionally, SSC underwent nanoemulsion coating, analyzed using dynamic light scattering and scanning electron microscopy, to enhance its application as a natural preservative.

View Article and Find Full Text PDF

This research investigates the efficacy of zinc oxide (ZnO) tubes in decontaminating polluted water using a substrate-free hydrothermal synthesis process for ZnO tubes. The synthesized tubes are impregnated into calcium alginate microfibres, strategically chosen for their high surface area to enhance photocatalytic degradation performance and for practical handling during decontamination and subsequent collection, thereby preventing secondary contamination. Structural and morphological analyses, conducted using Scanning Electron Microscopy (SEM) and X-ray Diffraction (XRD), thoroughly characterize the properties of the ZnO tubes and the composite material.

View Article and Find Full Text PDF

plays a critical role in the development of acne vulgaris. There has been a rise in the number of patients carrying strains that are resistant to antibiotics. Thus, alternative anti-microbial agents are required.

View Article and Find Full Text PDF

In this work, iron oxide (FeO) magnetic nanoparticles (MNPs) and graphene oxide (GO) nanosheets were prepared via the co-precipitation technique and the Modified Hummer method. FeO MNPs and GO nanosheets were combined to prepare FeO/GO nanocomposite and subsequently conjugated with Digitonin (DIG) in order to obtain a dual-targeted delivery system based on DIG/FeO/GO nanocomposite. SEM images reveal the presence of FeO MNPs at a scale of 100 nm, exhibiting dispersion between the GO nanosheets.

View Article and Find Full Text PDF

The high antibiotic resistance of Pseudomonas aeruginosa (PA) makes it critical to develop alternative antimicrobial agents that are effective and affordable. One of the many applications of silver nanoparticles (Ag NPs) is their use as an antimicrobial agent against bacteria resistant to common antibiotics. The key purpose of this research was to assess the antibacterial and antibiofilm effectiveness of biosynthesized Ag NPs against six biofilm-forming clinically isolated strains of PA and one reference strain (ATCC 27853).

View Article and Find Full Text PDF

The demand for rapid and accurate detection methods for Enteritidis necessitates the development of highly sensitive and specific biosensors to ensure proper monitoring of food safety and quality requirements in the food sector and to secure human health. This study focused on development of a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film on a gold electrode conductometric immunosensor for detection of Enteritidis. The sensor was modified with monoclonal anti- Enteritidis antibodies as biorecognition elements.

View Article and Find Full Text PDF

We fabricated ferroelectric films of the organic molecular diisopropylammonium chloride (DIPAC) using the dip-coating technique and characterized their properties using various methods. Fourier-transform infrared, scanning electron microscopy, and X-ray diffraction analysis revealed the structural features of the films. We also performed ab-initio calculations to investigate the electronic and polar properties of the DIPAC crystal, which were found to be consistent with the experimental results.

View Article and Find Full Text PDF

There is a limitation in the range of effectual antibiotics due to the Pseudomonas aeruginosa (PA) infection due to its innate antimicrobial resistance. Researchers have therefore been concentrating their efforts to discover advanced and cost effective antibacterial agents among the ever-increasing PA bacterial resistance strains. It has been discovered that various nanoparticles can be employed as antimicrobial agents.

View Article and Find Full Text PDF

Objective: Because of the need to extensively study the synergistic activity of metallic nanoparticles, this study aimed to evaluate the antibacterial activity of mixed metallic nanoparticles, made by differing the weight mixing ratio. We prepared multi-metallic nanorods (NRs) by chemical reduction method, with different ratio combinations of silver Ag and copper Cu, two main batches of nanorods were produced: bimetallic mix made only of Ag-Cu, and trimetallic mix made of Ag-Cu and lithium Li, AgCu NRs and AgCuLi NRs respectively. NaOH was used in the synthesis for the co-reduction of salt precursors.

View Article and Find Full Text PDF

In this study, polymer membrane(s) impregnated with carbon nanotubes (CNTs) were developed, characterized and evaluated for removing phenolic compounds from olive mill wastewater; thus, protecting the environment and public health. Polyethersulfone/functionalized, multi-walled carbon nanotube (PES/fCNTs) membranes were synthesized via the phase inversion method using PES and acid-treated CNTs. The prepared membranes were then characterized by scanning electron microscopy (SEM), Fourier-transform infrared spectroscopy (FTIR) and contact angle.

View Article and Find Full Text PDF

This paper studied the photocatalytic degradation of methylene blue (MB) using polymeric membrane impregnated with ZnO nanostructures under UV-light and sunlight irradiation. ZnO nanoparticles and ZnO nanowires were prepared using the hydrothermal technique. Cellulose acetate polymeric membranes were fabricated by the phase inversion method using dimethylformamide (DMF) as a solvent and ZnO nanostructures.

View Article and Find Full Text PDF

A conductometric immunosensor was developed for the detection of one of the most common foodborne pathogens, O157:H7 ( O157:H7), by conductometric sensing. The sensor was built based on a polyaniline/zinc oxide (PANI/ZnO) nanocomposite film spin-coated on a gold electrode. Then, it was modified with a monoclonal anti- O157:H7 antibody as a biorecognition element.

View Article and Find Full Text PDF

Background: With the continuous uptrend in the number of medical student graduates and the limited availability of postgraduate residency positions, the process of selecting the most appropriately qualified candidates to fill these positions remains challenging. This necessitates implementing objectively measured, distinguishing, and transparent selection process. The purpose of this study is to share our model of single-center resident selection for postgraduate residency programs to serve as a guide for other institutions.

View Article and Find Full Text PDF

White brined cheese may serve as an ideal medium for the growth of foodborne pathogens including E. coli O157:H7. The objectives of this study were i) to evaluate the inhibitory effects of zinc oxide (ZnO) nanoparticles against E.

View Article and Find Full Text PDF

Polysaccharide-based aerogels are promising drug carriers. Being nanoporous with a high specific surface area allows their use as a drug vehicle for various delivery routes. Intratracheal and intravenous administration of free cisplatin causes toxicity in the rat liver, lungs, and kidneys.

View Article and Find Full Text PDF

Aim: The aim of the study was to evaluate the antibacterial effects of zinc oxide nanoparticles (ZnO-NPs) and its possible alternative use for the treatment for mastitis in sheep and to determine the minimum inhibitory concentration (MIC) and minimum bactericidal concentration (MBC) of ZnO-NPs against multidrug-resistant and strains isolated from subclinical mastitis cases in sheep.

Materials And Methods: A total of 50 pooled milk samples were collected from ewes with subclinical mastitis. Milk samples were cultured using standard laboratory techniques, and multidrug-resistant bacterial strains were determined using the Kirby-Bauer disk diffusion method.

View Article and Find Full Text PDF

Background: Iron oxide (FeO) nanoparticles (IO-NP) were recently employed in medical applications as a diagnostic tool and drug carrier. Photofrin (PF) is a photosensitizer that clinically is used in Photodynamic therapy (PDT).

Study Design: The photosensitivity of PF and Rose Bengal (RB) mixed with (IO-NP) on red blood cells (RBCs) lysis was investigated.

View Article and Find Full Text PDF

PDMS and PMMA are two of the most used polymers in the fabrication of lab-on-chip or microfluidic devices. In order to use these polymers in biological applications, it is sometimes essential to be able to bind biomolecules such as proteins and DNA to the surface of these materials. In this work, we have evaluated a number of processes that have been developed to bind protein to PDMS surfaces which include passive adsorption, passive adsorption with glutaraldehyde cross-linking, (3-aminopropyl) triethoxysilane functionalization followed by glutaraldehyde or 1-ethyl-3-(3-dimethylaminopropyl) carbodiimide hydrochloride cross-linkers.

View Article and Find Full Text PDF

Metal oxide nanoparticles have been suggested as good candidates for the development of antibacterial agents. Cerium oxide (CeO2) and iron oxide (Fe2O3) nanoparticles have been utilized in a number of biomedical applications. Here, the antibacterial activity of CeO2 and Fe2O3 nanoparticles were evaluated on a panel of gram positive and gram negative bacteria in both the planktonic and biofilm cultures.

View Article and Find Full Text PDF

Due to finite size effects, such as the high surface-to-volume ratio and different crystal structures, magnetic nanoparticles are found to exhibit interesting and considerably different magnetic properties than those found in their corresponding bulk materials. These nanoparticles can be synthesized in several ways (e.g.

View Article and Find Full Text PDF