Publications by authors named "Borgschulte A"

Hydrogen is a volatile element, both as a molecular gas and as atomic hydrogen in materials. A method is described for the detection of the corresponding dynamic hydrogen in matter, as opposed to the relatively stable bond hydrogen ("static hydrogen"). The method is based on laser-stimulated hydrogen desorption using nanosecond laser pulses in the UV optical range.

View Article and Find Full Text PDF

NiFe electrocatalysts are among the most active phases for water splitting with regard to the alkaline oxygen evolution reaction (OER). The interplay between Ni and Fe, both at the surface and in the subsurface of the catalyst, is crucial to understanding such outstanding properties and remains a subject of debate. Various phenomena, ranging from the formation of oxides/(oxy)hydroxides to the associated segregation of certain species, occur during the electrochemical reactions and add another dimension of complexity that hinders the rational design of electrodes for water splitting.

View Article and Find Full Text PDF

Complex modeling of periodic excitation combined with time-resolved product detection is used to describe the complex response function of a catalytic system. We describe this concept of catalytic impedance spectroscopy (CIS) and the underlying general experimental approach and a concrete setup. The feasibility of CIS is experimentally demonstrated along the catalytic CO methanation reaction.

View Article and Find Full Text PDF

In the past, neutron imaging has been the little brother of advanced neutron spectroscopy techniques due to its apparent simplicity. However, this simplicity allows the studying of complex chemical and electrochemical processes and related devices even under harsh reaction conditions such as high pressure, high temperature, corrosive and/or air sensitive environments. We review a number of highly relevant case studies as archetypal examples of modern energy technology; that is heat storage, power-to-X, batteries, fuel cells, and catalysis.

View Article and Find Full Text PDF

Provision of atomic hydrogen by hydrogen dissociation catalysts only moderately accelerates the hydrogenation rate of magnesium. They shed light on this well-known but technically challenging fact through a combined approach using an unconventional surface science technique together with Density Functional Theory (DFT) calculations. The calculations demonstrate the drastic electronic structure changes during transformation of Mg to MgH , which make fractional hydrogen coverage on the surface, as well as substoichiometric hydrogen content in the bulk energetically unfavorable.

View Article and Find Full Text PDF

Efficiency losses due to side reactions are one of the main challenges in battery development. Despite providing valuable insights, the results of standard analysis on the individual components cannot be simply extrapolated to the full operating system. Therefore, non-destructive, and high resolution approaches that allow the investigation of the full system are desired.

View Article and Find Full Text PDF

Aliovalent I-V-VI semiconductor nanocrystals are promising candidates for thermoelectric and optoelectronic applications. Famatinite CuSbSe stands out due to its high absorption coefficient and narrow band gap in the mid-infrared spectral range. This paper combines experiment and theory to investigate the synthesis and electronic structure of colloidal CuSbSe nanocrystals.

View Article and Find Full Text PDF

Heterogeneous catalysts are materials with a complex structure at the atomic to mesoscopic scale, which depends on a variety of empirical parameters applied during preparation and processing. Although model systems clarified the general physical and chemical phenomena relevant to catalysis, such as hydrogen spillover, a rational design of heterogeneous catalysts is impeded by the sheer number of parameters. Combinatorial methods and high-throughput techniques have the potential of accelerating the development of optimal catalysts.

View Article and Find Full Text PDF

The kinetics of most of chemical energy storage and conversion processes is rate-limited by the mass transport through matter. There is an uncertainty on the corresponding kinetic models, especially if based solely on kinetic theory. Henceforth analytical strategies coupled to setups, in order to capture data for overcoming this limitation are essential.

View Article and Find Full Text PDF

Titanium is an excellent getter material, catalyzes gas-solid reactions such as hydrogen absorption in lightweight metal hydrides and complex metal hydrides and has recently been shown as a potential ammonia synthesis catalyst. However, knowledge of the surface properties of this metal is limited when it absorbs large quantities of hydrogen at operation conditions. Both the conceptual description of such a surface as well as the experimental determination of surface hydrogen concentration on hydride-forming metals is challenging due to the dynamic bulk properties and the incompatibility of traditional surface science methods with the hydrogen pressure needed to form the metal hydride, respectively.

View Article and Find Full Text PDF

Sorption enhanced methanol production makes use of the equilibrium shift of the hydrogenation reaction towards the desired products. However, the increased complexity of the catalyst system leads to additional reactions and thus side products such as dimethyl ether, and complicates the analysis of the reaction mechanism. On the other hand, the unusually high concentration of intermediates and products in the sorbent facilitates the use of inelastic neutron scattering (INS) spectroscopy.

View Article and Find Full Text PDF

Thermophotovoltaic devices have promising applications for energy conversion. However, current conversion efficiency of chemical energy to light is very low, limited by the competing process of heat dissipation released as black body radiation. From a fundamental point of view, the direct conversion of chemical energy into light without this detour is possible.

View Article and Find Full Text PDF

Although of pivotal importance in heterogeneous hydrogenation reactions, the amount of hydrogen on catalysts during reactions is seldom known. We demonstrate the use of neutron imaging to follow and quantify hydrogen containing species in Cu/ZnO catalysts operando during methanol synthesis. The steady-state measurements reveal that the amount of hydrogen containing intermediates is related to the reaction yields of CO and methanol, as expected from simple considerations of the likely reaction mechanism.

View Article and Find Full Text PDF

Hydrogen-containing materials are of fundamental as well as technological interest. An outstanding question for both is the amount of hydrogen that can be incorporated in such materials, because that determines dramatically their physical properties such as electronic and crystalline structure. The number of hydrogen atoms in a metal is controlled by the interaction of hydrogens with the metal and by the hydrogen-hydrogen interactions.

View Article and Find Full Text PDF

A massive reduction in CO emissions from fossil fuel burning is required to limit the extent of global warming. However, carbon-based liquid fuels will in the foreseeable future continue to be important energy storage media. We propose a combination of largely existing technologies to use solar energy to recycle atmospheric CO into a liquid fuel.

View Article and Find Full Text PDF

The catalytic hydrogenation of CO includes the dissociation of hydrogen and further reaction with CO and intermediates. We investigate how the amount of hydrogen in the bulk of the catalyst affects the hydrogenation reaction taking place at the surface. For this, we developed an experimental setup described herein, based on a magnetic suspension balance and an infrared spectrometer, and measured pressure-composition isotherms of the Pd-H system under conditions relevant for CO reduction.

View Article and Find Full Text PDF

In this work we prepare Langmuir-Blodgett monolayers with a trifunctional amphiphilic anthraphane monomer. Upon spreading at the air/water interface, the monomers self-assemble into 1 nm-thin monolayer islands, which are highly fluorescent and can be visualized by the naked eye upon excitation. In situ fluorescence spectroscopy indicates that in the monolayers, all the anthracene units of the monomers are stacked face-to-face forming excimer pairs, whereas at the edges of the monolayers, free anthracenes are present acting as edge groups.

View Article and Find Full Text PDF

Biofilms causing medical conditions or interfering with technical applications can prove undesirably resistant to silver nanoparticle (AgNP)-based antimicrobial treatment, whereas beneficial biofilms may be adversely affected by the released silver nanoparticles. Isolated biofilm matrices can induce reduction of silver ions and stabilization of the formed nanosilver, thus altering the exposure conditions. We thus study the reduction of silver nitrate solution in model experiments under chemically defined conditions as well as in stream biofilms.

View Article and Find Full Text PDF

For the first time, in situ monitoring of uninterrupted mechanochemical synthesis of two bimetallic amidoboranes, M Mg(NH BH ) (M=Li, Na), by means of Raman spectroscopy, has been applied. This approach allowed real-time observation of key intermediate phases, and a straightforward follow-up of the reaction course. Detailed analysis of time-dependent spectra revealed a two-step mechanism through MNH BH ⋅NH BH adducts as key intermediate phases which further reacted with MgH , giving M Mg(NH BH ) as final products.

View Article and Find Full Text PDF

Femtosecond x-ray absorption spectroscopy with a laser-driven high-harmonic source is used to map ultrafast changes of x-ray absorption by femtometer-scale coherent phonon displacements. In LiBH, displacements along an phonon mode at 10 THz are induced by impulsive Raman excitation and give rise to oscillatory changes of x-ray absorption at the Li K-edge. Electron density maps from femtosecond x-ray diffraction data show that the electric field of the pump pulse induces a charge transfer from the to neighboring Li ions, resulting in a differential Coulomb force that drives lattice vibrations in this virtual transition state.

View Article and Find Full Text PDF

The behavior of compound 2 [1,3,5-tri(2,2'-bipyridin-5-yl)benzene] with three bipyridine units arranged in a star geometry is investigated in the presence and absence of Ni(ClO). Its properties at the air-water interface as well as after transfer onto a solid substrate are studied by several techniques including Brewster angle microscopy, X-ray reflectivity, neutron reflectivity, X-ray photoelectron spectroscopy, Rutherford backscattering spectrometry, and atomic force microscopy combined with optical microscopy. It is found that compound 2 within the monolayers formed stays almost vertical at the interface and that at high Ni/2 (Ni/2 = 4000, 20'000) ratios two of the three bipyridine units of 2 are complexed, resulting in supramolecular sheets that are likely composed of arrays of linear metal-organic complexation polymers.

View Article and Find Full Text PDF

The color changes in chemo- and photochromic MoO used in sensors and in organic photovoltaic (OPV) cells can be traced back to intercalated hydrogen atoms stemming either from gaseous hydrogen dissociated at catalytic surfaces or from photocatalytically split water. In applications, the reversibility of the process is of utmost importance, and deterioration of the layer functionality due to side reactions is a critical challenge. Using the membrane approach for high-pressure XPS, we are able to follow the hydrogen reduction of MoO thin films using atomic hydrogen in a water free environment.

View Article and Find Full Text PDF

Water adsorption enhanced catalysis has been recently shown to greatly increase the conversion yield of CO2 methanation. However, the joint catalysis and adsorption process requires new reactor concepts. We measured the spatial water distribution in a model fixed bed reactor using time resolved neutron imaging.

View Article and Find Full Text PDF

Liquid complex hydrides are a new class of hydrogen storage materials with several advantages over solid hydrides, they are flexible in shape, they are a flowing fluid and their convective properties facilitate heat transport. The physical and chemical properties of a gaseous hydride change when the molecules are adsorbed on a material with a large specific surface area, due to the interaction of the adsorbate with the surface of the host material and the reduced number of collisions between the hydride molecules. In this paper we report the synthesis and stabilization of gaseous Ti(BH).

View Article and Find Full Text PDF