Background: Animal bedding remains an underutilized source of raw material for bioethanol production, despite the economic and environmental benefits of its use. Further research concerning the optimization of the production process is needed, as previously tested pretreatment methods have not increased the conversion efficiency to the levels necessary for commercialization of the process.
Results: We propose steam pretreatment of animal bedding, consisting of a mixture of straw and cow manure, to deliver higher ethanol yields.
The limited tolerance of Saccharomyces cerevisiae to the inhibitors present in lignocellulosic hydrolysates is a major challenge in second-generation bioethanol production. Short-term adaptation of the yeast to lignocellulosic hydrolysates during cell propagation has been shown to improve its tolerance, and thus its performance in lignocellulose fermentation. The aim of this study was to investigate the short-term adaptation effects in yeast strains with different genetic backgrounds.
View Article and Find Full Text PDFBackground: Integration of first- and second-generation ethanol production can facilitate the introduction of second-generation lignocellulosic ethanol production. Consolidation of the second-generation with the first-generation process can potentially reduce the downstream processing cost for the second-generation process as well as providing the first-generation process with energy. This study presents novel experimental results from integrated first- and second-generation ethanol production from grain and wheat straw in a process development unit.
View Article and Find Full Text PDFBackground: Integration of second-generation (2G) bioethanol production with existing first-generation (1G) production may facilitate commercial production of ethanol from cellulosic material. Since 2G hydrolysates have a low sugar concentration and 1G streams often have to be diluted prior to fermentation, mixing of streams is beneficial. Improved ethanol concentrations in the 2G production process lowers energy demand in distillation, improves overall energy efficiency and thus lower production cost.
View Article and Find Full Text PDFWheat straw was pretreated and fermented to ethanol. Two strains, which had been mutated from the genetically modified Saccharomyces cerevisiae TMB3400, KE6-12 and KE6-13i, have been used in this study and the results of performance were compared to that of the original strain. The glucose and xylose co-fermentation ability was investigated in batch fermentation of steam-pretreated wheat straw (SPWS) liquid (undiluted, and diluted 1.
View Article and Find Full Text PDFBackground: The commercialization of second-generation bioethanol has not been realized due to several factors, including poor biomass utilization and high production cost. It is generally accepted that the most important parameters in reducing the production cost are the ethanol yield and the ethanol concentration in the fermentation broth. Agricultural residues contain large amounts of hemicellulose, and the utilization of xylose is thus a plausible way to improve the concentration and yield of ethanol during fermentation.
View Article and Find Full Text PDFBackground: Bioethanol can be produced from sugar-rich, starch-rich (first generation; 1G) or lignocellulosic (second generation; 2G) raw materials. Integration of 2G ethanol with 1G could facilitate the introduction of the 2G technology. The capital cost per ton of fuel produced would be diminished and better utilization of the biomass can be achieved.
View Article and Find Full Text PDF