J Integr Plant Biol
October 2024
The programmable nuclease TnpB is significantly smaller than Cas9, can edit genes in medicinal plants, including Artemisia annua, Salvia miltiorrhiza, Scutellaria baicalensis, Isatis indigotica, and Codonopsis pilosula, and has potential uses in molecular breeding to enhance crop yield and quality.
View Article and Find Full Text PDFQuantum dots (QDs) exhibit superior brightness and photochemical stability, making them the preferred option for highly sensitive single-molecule detection compared with fluorescent dyes or proteins. Nevertheless, their high surface energy leads to nonspecific adsorption and poor colloidal stability. In the past decades, we have found that QD-based fluorescent nanoparticles (FNs) can not only address these limitations but also enhance detection sensitivity.
View Article and Find Full Text PDFArtemisinin is primarily synthesized and stored in the subepidermal space of the glandular trichomes of Artemisia annua. The augmentation of trichome density has been demonstrated to enhance artemisinin yield. However, existing literature lacks insights into the correlation between the stratum corneum and trichomes.
View Article and Find Full Text PDFArtemisinin, which is extracted from the plant Artemisia annua L., is a crucial drug for curing malaria and has potential applications for treating cancer, diabetes, pulmonary tuberculosis, and other conditions. Demand for artemisinin is therefore high, and enhancing its yield is important.
View Article and Find Full Text PDFThe relative abundance of single-exon genes (SEGs) in higher plants is perplexing. Uncovering the synonymous codon usage pattern of SEGs will benefit for further understanding their underlying evolutionary mechanism in plants. Using internal correspondence analysis (ICA), we reveal a significant difference in synonymous codon usage between SEGs and multiple-exon genes (MEGs) in rice.
View Article and Find Full Text PDFNanotechnology is a promising means for development of sustainable agriculture while the study of nanoparticle-mediated plant disease resistance is still in its primary stage. Nanotechnology has shown great promise in regulating: the content of secondary metabolites, inducing disease resistance genes, delivering hormones, delivering biomolecules (such as: nucleotides, proteins, and activators), and obtaining transgenic plants to resist plant diseases. In this review, we conclude its versatility and applicability in disease management strategies and diagnostics and as molecular tools.
View Article and Find Full Text PDFArtemisinin is an important drug for resistance against malaria. Artemisinin is derived from the glandular trichome of leaves, stems, or buds of the Chinese traditional herb . Increasing the trichome density may enhance the artemisinin content of .
View Article and Find Full Text PDFPhytohormones affect plant growth and development. Many phytohormones are involved in the initiation of trichome development, which can help prevent damage from UV radiation and insect bites and produce fragrance, flavors, and compounds used as pharmaceuticals. Phytohormones promote the participation of transcription factors in the initiation of trichome development; for example, the transcription factors HDZIP, bHLH and MYB interact and form transcriptional complexes to regulate trichome development.
View Article and Find Full Text PDFHerein, we presented a novel logic gate based on an INHIBITION gate that performs parallel readouts. Logic gates performing INHIBITION and YES/OR were constructed using surface-enhanced Raman scattering as optical outputs for the first time. The strategy allowed for simultaneous reading of outputs in one tube.
View Article and Find Full Text PDFA simple, toehold-mediated two-way input DNA machine has been developed. Utilizing symmetric and asymmetric protector sequences, INH, XOR logic gates and a half-subtractor are designed based on this two-way structure.
View Article and Find Full Text PDF