Early and accurate detection of bacterial pathogens in the blood is the most crucial step for sepsis management. Gram-negative bacteria are the most common organisms causing severe sepsis and responsible for high morbidity and mortality. We aimed to develop a method for rapid multiplex identification of clinically important Gram-negative pathogens and also validated whether our system can identify Gram-negative pathogens with the cell-free plasm DNA from infected blood.
View Article and Find Full Text PDFEarly detection of pathogens from blood and identification of their drug resistance are essential for sepsis management. However, conventional culture-based methods require relatively longer time to identify drug-resistant pathogens, which delays therapeutic decisions. For precise multiplex detection of drug-resistant Gram-positive pathogens, we developed a method by using stuffer-free multiplex ligation-dependent probe amplification (MLPA) coupled with high-resolution CE single-strand conformation polymorphisms (CE-SSCP) system.
View Article and Find Full Text PDFCapillary electrophoresis-single strand conformation polymorphism (CE-SSCP) coupled with stuffer-free multiplex ligation-dependent probe amplification (MLPA) was developed to identify 13 species of foodborne pathogens simultaneously. Species-specific MLPA probes were designed for nine of these species. These probes were targeted to the groEL, glyA, MMS, tuf, inv, ipaH, nuc, vvh, and 16S rRNA genes, which corresponded to Bacillus cereus, Campylobacter coli, Cronobacter sakazakii, Enterococcus spp.
View Article and Find Full Text PDFCrotamine is a peptide toxin found in the venom of the rattlesnake Crotalus durissus terrificus and has antiproliferative, antimicrobial, and antifungal activities. Herein, we show that crotamine dose-dependently induced macrophage phagocytic and cytostatic activity by the induction of nitric oxide (NO) and tumor necrosis factor-alpha (TNF-α). Moreover, the crotamineinduced expression of iNOS and TNF-α is mediated through the phosphorylation of p38 and the NF-κB signaling cascade in macrophages.
View Article and Find Full Text PDFKorean J Intern Med
May 2015
Human genetic variation is represented by the genetic differences both within and among populations, and most genetic variants do not cause overt diseases but contribute to disease susceptibility and influence drug response. During the last century, various genetic variants, such as copy number variations (CNVs), have been associated with diverse human disorders. Here, we review studies on the associations between CNVs and autoimmune diseases to gain some insight.
View Article and Find Full Text PDFAntibody-conjugated magnetic nanoparticles (Ab-MNPs) have potential in pathogen detection because they allow target cells to be easily separated from complex sample matrices. However, the sensitivity and specificity of pathogen capture by Ab-MNPs generally vary according to the types of MNPs, antibodies, and sample matrices, as well as preparation methods, including immobilization. Therefore, achieving a reproducible analysis utilizing Ab-MNPs as a pathogen detection method requires accurate characterization of Ab-MNP capture ability and standardization of all handling processes.
View Article and Find Full Text PDFWe developed a novel 3D immunomagnetic flow assay for the rapid detection of pathogenic bacteria in a large-volume food sample. Antibody-functionalized magnetic nanoparticle clusters (AbMNCs) were magnetically immobilized on the surfaces of a 3D-printed cylindrical microchannel. The injection of a Salmonella-spiked sample solution into the microchannel produced instant binding between the AbMNCs and the Salmonella bacteria due to their efficient collisions.
View Article and Find Full Text PDFLower respiratory tract infection is one of the most common infectious diseases. However, conventional methods for detecting infectious pathogens are time-consuming, and generally have a limited impact on early therapeutic decisions. We previously reported a rapid and sensitive method for detecting such pathogens using stuffer-free multiplex ligation-dependent probe amplification coupled with high-resolution CE-SSCP.
View Article and Find Full Text PDFIn this genomic era, the ability to assay multiple genomic hot spots that have strong clinical implications is greatly desired. Conventional PCR-based methods suffer from frequent false-positive detections, particularly when a multiplex analysis is desirable. As an alternative to the error-prone conventional methods, multiplex ligase-based genotyping methods combined with CE have a strong potential.
View Article and Find Full Text PDFIn systems biological studies, precise expression profiling of functionally important gene sets is crucial. Real-time polymerase chain reaction is generally used for this purpose. Despite its widespread acceptance, however, this method is not suitable for multiplex analysis, resulting in an inefficient assay process.
View Article and Find Full Text PDFThe success of antimicrobial therapy depends on effective prescription of antibiotics. Assessment of clinical isolates using rapid antimicrobial susceptibility tests allows effective microbiological therapy to be commenced in a timely manner. However, conventional antimicrobial susceptibility testing is time-consuming and laborious.
View Article and Find Full Text PDFRecent improvements in the multiplex ligation-dependent probe amplification (MLPA) method promise successful multiplex analysis of various genetic markers. In particular, it has been demonstrated that elimination of the stuffer sequence included in MLPA probes for length-dependent analysis substantially simplifies the probe design process and improves the accuracy of the analysis. As is the case for other CE-based methods, MLPA could be further developed on a microchip platform.
View Article and Find Full Text PDFAmong the molecular diagnostic methods for bacteria-induced diseases, capillary electrophoresis-based single-strand conformation polymorphism (CE-SSCP) combined with 16S rRNA gene-specific PCR has enormous potential because it can separate sequence variants using a simple procedure. However, conventional CE-SSCP systems have limited resolution and cannot separate most 16S rRNA gene-specific markers into separate peaks. A high-resolution CE-SSCP system that uses a poly(ethyleneoxide)-poly(propyleneoxide)-poly(ethyleneoxide) triblock copolymer matrix was recently developed and shown to effectively separate highly similar PCR products.
View Article and Find Full Text PDFDeveloping diagnostic tools based on the application of known disease/phenotype-associated copy number variations (CNVs) requires the capacity to measure CNVs in a multiplex format with sufficient reliability and methodological simplicity. In this study, we developed a reliable and user-friendly multiplex CNV detection method, termed stuffer-free MLPA-CE-SSCP, that combines a variation of multiplex ligation-dependent probe amplification (MLPA) with CE-SSCP. In this variation, MLPA probes were designed without the conventionally required stuffer sequences.
View Article and Find Full Text PDFSensitive multiplex detection methods for foodborne pathogens are important in controlling food safety, and detection of genetic markers is accepted to be one of the best tools for sensitive detection. Although CE technology offers great potential in terms of sensitive multiplex detection, the necessary amplification is confined to markers sharing common primers such as the 16S rRNA gene. For precise and sensitive detection, pathogen-specific genes are optimal markers.
View Article and Find Full Text PDFThe H1N1 influenza virus has spread worldwide to become pandemic. Here, we developed a new method to discriminate various types of influenza A, including H1N1, using stuffer-free multiplex ligation-dependent probe amplification based on a conformation-sensitive separation method, namely capillary electrophoresis-single-strand conformation polymorphism. Unlike conventional methods, our approach precisely detects five relevant gene markers permitting confirmation of infection.
View Article and Find Full Text PDFRapid and sensitive detection of food-borne pathogens is critical for food safety from the viewpoint of both the public health professionals and the food industry. Conventional method is, however, known to be labor-intensive, time-consuming, and expensive due to the separate cultivation and biochemical assay. Many relevant technologies, such as flow cytometry, MALDI-MS, ESI-MS, DNA microarray, and CE, have been intensively developed to date.
View Article and Find Full Text PDF