Publications by authors named "Bor-Ran Li"

During the COVID-19 pandemic, the use of lateral flow assays (LFAs) expanded significantly, offering testing beyond traditional health care. Their appeal lies in the ease of use, affordability, and quick results. However, LFAs often have lower sensitivity and specificity compared with ELISA and PCR tests.

View Article and Find Full Text PDF
Article Synopsis
  • Male infertility is largely caused by declining semen quality, prompting innovations in sperm sorting technologies to improve assisted reproductive methods.
  • The TRMC (thermotaxis and rheotaxis microfluidic) device sorts sperm efficiently in just 15 minutes by mimicking natural processes, significantly increasing the percentage of viable sperm with improved motility and DNA integrity.
  • Results show a surge in progressive sperm from 3.90% to 96.11%, a 69% boost in motility, and a 90% improvement in DNA integrity, making the TRMC device a promising tool for in vitro fertilization and other fertility treatments.
View Article and Find Full Text PDF

Biofouling due to nonspecific proteins or cells on the material surfaces is a major challenge in a range of applications such as biosensors, medical devices, and implants. Even though poly(ethylene glycol) (PEG) has become the most widely used stealth material in medical and pharmaceutical products, the number of reported cases of PEG-triggered rare allergic responses continues to increase in the past decades. Herein, a new type of antifouling material poly(amine oxide) (PAO) has been evaluated as an alternative to overcome nonspecific foulant adsorption and impart comparable biocompatibility.

View Article and Find Full Text PDF

Assisted reproductive technology (ART) is an important invention for the treatment of human infertility, and the isolation of high-quality sperm with progressive motility is one of the most critical steps that eventually affect the fertilization rate. Conventional sperm separation approaches include the swim-up method and density gradient centrifugation. However, the quality of isolated sperm obtained from both approaches can still be improved by improving sorted sperm motility, minimizing the DNA fragmentation rate, and removing abnormal phenotypes.

View Article and Find Full Text PDF

Water is one of the most indispensable elements for human beings. People can live without food for a couple of weeks but cannot live without water for a couple of days. Unfortunately, drinking water is not always safe around the world; in many areas, the water for drinking could be contaminated with various microbes.

View Article and Find Full Text PDF

The development of wearable devices provides approaches for the realization of self-health care. Easily carried wearable devices allow individual health monitoring at any place whenever necessary. There are various interesting monitoring targets, including body motion, organ pressure, and biomarkers.

View Article and Find Full Text PDF

Urinalysis is one of the simplest and most common medical tests in modern cities. With the assistance of professional technicians and equipment, people in metropolitan areas can effortlessly acquire information about their physiological conditions from traditional clinical laboratories. However, the threshold, including precise benchtop equipment and well-trained personnel, still remains a considerable dilemma for residents in healthcare-poor areas.

View Article and Find Full Text PDF

Alzheimer's disease (AD) is one of the important neurodegenerative diseases, in the modern aging society, it has become an issue people need to work on. Of the pathogenic factor which leads to AD, beta-amyloid (Aβ) is the most important one. It can form the senile plaque which aggregates in the neuron and interrupts the signal transmission.

View Article and Find Full Text PDF

Enzyme-linked immunosorbent assays (ELISAs) are tests that uses antibody recognition and enzyme catalytic activity to identify a substance, and they have been widely used as a diagnostic tool in the clinic. However, performing an ELISA requires various liquid handling steps and long binding times. To solve this problem, we developed a magnetic microfluidic ELISA system (MMF-ELISA).

View Article and Find Full Text PDF

Recent advances in microelectronics and electrochemical sensing platforms have preceded the development of devices for personal monitoring and managing physiological and metabolic information that exploit sweat as a noninvasive, convenient approach for providing information about underlying health conditions, such as glucose level monitoring. Although most sweat glucose sensors have targeted applications during exercise and other active stimulation induced-sweat, natural sweating offers an attractive alternative with minimal effect on users that can be accessed during routine and sedentary activities without impeding personal lifestyle and preserves the correlation between blood and sweat glucose. Here, we present a noninvasive sweat glucose sensor with convenient hydrogel patches for rapid sampling of natural perspiration without external activities that stimulate sweating.

View Article and Find Full Text PDF

Since nucleic acid amplification technology has become a vital tool for disease diagnosis, the development of precise applied nucleic acid detection technologies in point-of care testing (POCT) has become more significant. The microfluidic-based nucleic acid detection platform offers a great opportunity for on-site diagnosis efficiency, and the system is aimed at user-friendly access. Herein, we demonstrate a microfluidic system with simple operation that provides reliable nucleic acid results from 18 uniform droplets via LAMP detection.

View Article and Find Full Text PDF

Droplet-based transport driven by surface tension has been explored as an automated pumping source for several biomedical applications. This paper presented a simple and fast superhydrophobic modify and patterning approach to fabricate various open-surface platforms to manipulate droplets to achieve transport, mixing, concentration, and rebounding control. Several commercial reagents were tested in our approach, and the Glaco reagent was selected to create a superhydrophobic layer; laser cutters are utilized to scan on these superhydrophobic surface to create gradient hydrophilic micro-patterns.

View Article and Find Full Text PDF

Sweat-based wearable devices have attracted increasing attention by providing abundant physiological information and continuous measurement through noninvasive healthcare monitoring. Sweat pressure generated sweat glands to the skin surface associated with osmotic effects may help to elucidate such parameters as physiological conditions and psychological factors. This study introduces a wearable device for measuring secretion sweat pressure through noninvasive, continuous monitoring.

View Article and Find Full Text PDF

Lung cancer is one of the leading causes of death worldwide. Fifteen percent of lung cancer patients will present with malignant pleural effusion initially, and up to 50% will have malignant pleural effusion throughout the course of the disease. In this study, we developed a spiral microfluidic device that can rapidly isolate cancer cells and improve their purity through fluid dynamics.

View Article and Find Full Text PDF

Proper orientation of probes and the binding capacity of surfaces will determine the performance of bio-applications. It has been reported that immobilizing through bio-/chemical affinity is an efficient but gentle strategy to solve the above-mentioned issue. Herein, we introduce a total self-assembly approach the strong affinity of nickel oxide (NiO) to the polyhistidine-tag (His-tag).

View Article and Find Full Text PDF

We report a peptide-based sensor that involves a multivalent interaction with L-ascorbate 6-phosphate lactonase (UlaG), a protein marker of Streptococcus pneumonia. By integrating the antifouling feature of the sensor, we significantly improved the signal-to-noise ratio of UlaG detection. The antifouling surface was fabricated via electrodeposition using an equivalent mixture of 4-amino-N,N,N-trimethylanilinium and 4-aminobenzenesulfonate.

View Article and Find Full Text PDF

Electrochemical biosensors have been applied in a broad range of clinical applications for pathogen biomarker detection and medical applications and diagnosis due to the sensitivity of electrochemical methods and the bioselectivity of the components. The complexity of clinical conditions with various biofoulants (proteins, cells, polysaccharides and lipids) severely influences the reliability and stability of sensors for direct detection or immersion under changing conditions. Therefore, designing an antifouling sensing platform that can effectively reduce undesired binding to maintain biosensor performance in optimized analysis is necessary.

View Article and Find Full Text PDF

Open-surface microfluidics is promising in terms of enabling economical and rapid biochemical analysis for addressing challenges associated with medical diagnosis and food safety. To this end, we present a simple and economical approach to develop an open-surface microfluidic platform suitable for facile liquid transport and mixing. Customizable patterns with tailored wettability are deposited using a plasma-assisted deposition technique under atmospheric pressure.

View Article and Find Full Text PDF

Peripheral blood lymphocytes (PBLs) are mature lymphocytes that circulate in the blood rather than being localized to organs. A reliable label-free collection approach that can viably and appropriately isolate PBLs to establish in vitro culture systems is crucial for basic research and clinical requirements. However, isolation of PBLs from whole blood is difficult, and so the development of a rapid and safe method to perform this task is required.

View Article and Find Full Text PDF

Blood tests provide crucial diagnostic information regarding several diseases. A key factor that affects the precision and accuracy of blood tests is the interference of red blood cells; however, the conventional methods of blood separation are often complicated and time consuming. In this study, we devised a simple but high-efficiency blood separation system on a self-strained microfluidic device that separates 99.

View Article and Find Full Text PDF

Boronic acids (BAs) provide strong potential in orientation immobilization of antibody and the modification method is crucial for efficiency optimization. A highly effective method has been developed for rapid antibody immobilization on gold electrodes through the electrodeposition of a BA⁻containing linker in this study. Aniline-based BA forms a condense layer while antibody could automatically immobilize on the surface of the electrode.

View Article and Find Full Text PDF

Diabetes has become a chronic metabolic disorder, and the growing diabetes population makes medical care more important. We investigated using a portable and noninvasive contact lens as an ideal sensor for diabetes patients whose tear fluid contains glucose. The key feature is the reversible covalent interaction between boronic acid and glucose, which can provide a noninvasive glucose sensor for diabetes patients.

View Article and Find Full Text PDF

Streptococcus pneumoniae, a penicillin-sensitive bacterium, is recognized as a major cause of pneumonia and is treated clinically with penicillin-based antibiotics. The rapid increase in resistance to penicillin and other antibiotics affects 450 million people globally and results in 4 million deaths every year. To unveil the mechanism of resistance of S.

View Article and Find Full Text PDF

A new approach to immobilize zwitterionic molecules rapidly and highly efficiently on a gold surface applies aniline-based electrodeposition. The zwitterion-functionalized antifouling surface enables a decrease of the adsorption of non-specific proteins by 95% from fetal bovine serum (FBS, 10%).

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionvebflaulg04npj8a84pbl8g13mqr08ip): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once