Publications by authors named "Bor Jang Hwang"

Prostate cancer (PCa) remains a significant global health burden and an increase in oxidative stress is associated with cancer progression. High Mobility Group A2 (HMGA2), a chromatin architectural protein, increases oxidative stress and promotes sensitivity to ferroptosis inducers, however, the mechanism is unknown. We investigated the role of HMGA2 in GPX4 regulation and the impact on cellular responses to oxidative stress and ferroptosis sensitivity.

View Article and Find Full Text PDF

A new sensor based on Ethylbenzothiazolium-2-hydroxynaphthaldehyde conjugate-based fluorescent sensor, (E)-3-ethyl-2-(2-(2-hydroxynaphthalen-1-yl) vinyl) benzo[d]thiazol-3-ium iodide (SU-1) was designed and synthesized. The structure of SU-1 was confirmed by H NMR, C NMR, HRMS, and single crystal XRD spectral analysis. SU-1 displayed a colorimetric and fluorometric response in a DMSO:HO (1:1,v/v) matrix, changing color from pale yellow to colorless visible to the naked eye, accompanied by a ∼ 120 nm red-shift in the absorption spectra upon CN addition.

View Article and Find Full Text PDF

Metastatic prostate cancer (mPCa) is a leading cause of mortality, partly due to its resistance to anti-androgens like enzalutamide. Snail can promote this resistance by increasing full-length AR and AR-V7. High Mobility Group AT-hook 2 (HMGA2), a DNA-binding protein upstream of Snail, is crucial in proliferation and epithelial-mesenchymal transition (EMT).

View Article and Find Full Text PDF

Oxidative stress is increased in several cancers including prostate cancer, and is currently being exploited in cancer therapy to induce ferroptosis, a novel nonapoptotic form of cell death. High mobility group A2 (HMGA2), a non-histone protein up-regulated in several cancers, can be truncated due to chromosomal rearrangement or alternative splicing of HMGA2 gene. The purpose of this study is to investigate the role of wild-type vs.

View Article and Find Full Text PDF

The Rad9-Rad1-Hus1 checkpoint clamp activates the DNA damage response and promotes DNA repair. DNA loading on the central channel of the Rad9-Rad1-Hus1 complex is required to execute its biological functions. Because Rad9A has the highest DNA affinity among the three subunits, we determined the domains and functional residues of human Rad9A that are critical for DNA interaction.

View Article and Find Full Text PDF

Telomeres consist of special features and proteins to protect the ends of each chromosome from deterioration and fusion. The telomeric DNA repeats are highly susceptible to oxidative damage that can accelerate telomere shortening and affect telomere integrity. Several DNA repair factors including MYH/MUTYH DNA glycosylase, its interacting partners Rad9/Rad1/Hus1 checkpoint clamp, and SIRT6 aging regulator, are associated with the telomeres.

View Article and Find Full Text PDF

In the base excision repair pathway, MYH/MUTYH DNA glycosylase prevents mutations by removing adenine mispaired with 8-oxoG, a frequent oxidative lesion. MYH glycosylase activity is enhanced by Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp and SIRT6 histone/protein deacetylase. Here, we show that MYH, SIRT6, and 9-1-1 are recruited to confined oxidatively damaged regions on telomeres in mammalian cells.

View Article and Find Full Text PDF

Melanoma patients respond poorly to chemotherapies because they acquire drug resistance. Therapies that can overcome the resistance to inhibitors of the mutated BRAF protein kinase in melanoma are urgently needed. Chk1 protein kinase is a central component of the DNA damage response and plays a crucial role in controlling cell cycle progression.

View Article and Find Full Text PDF

Phosphoenolpyruvate carboxykinase (PEPCK) is well known for its role in gluconeogenesis. However, PEPCK is also a key regulator of TCA cycle flux. The TCA cycle integrates glucose, amino acid, and lipid metabolism depending on cellular needs.

View Article and Find Full Text PDF

Background: SIRT6, a member of the NAD(+)-dependent histone/protein deacetylase family, regulates genomic stability, metabolism, and lifespan. MYH glycosylase and APE1 are two base excision repair (BER) enzymes involved in mutation avoidance from oxidative DNA damage. Rad9-Rad1-Hus1 (9-1-1) checkpoint clamp promotes cell cycle checkpoint signaling and DNA repair.

View Article and Find Full Text PDF

Cell cycle checkpoints provide surveillance mechanisms to activate the DNA damage response, thus preserving genomic integrity. The heterotrimeric Rad9-Rad1-Hus1 (9-1-1) clamp is a DNA damage response sensor and can be loaded onto DNA. 9-1-1 is involved in base excision repair (BER) by interacting with nearly every enzyme in BER.

View Article and Find Full Text PDF
Article Synopsis
  • The RAD9A-HUS1-RAD1 (9-1-1) complex is essential for DNA damage signaling and repair, with a specific focus on the HUS1 protein's functional residues.
  • Key findings show that certain residues within HUS1 are crucial for its assembly, DNA binding, and the ability to signal for DNA repair processes, particularly under genotoxic stress.
  • The research suggests that distinct regions of HUS1 play different roles: while some are vital for chromatin localization and signaling, others are necessary for interacting with proteins like MYH, highlighting the complex's multifaceted role in maintaining genomic integrity.
View Article and Find Full Text PDF

SIRT1, a member of the NAD(+)-dependent histone/protein deacetylase family, is involved in chromatin remodeling, DNA repair, and stress response and is a potential drug target. 5-fluorouracil (FU) and the SN1-type DNA methylating agent temozolomide (TMZ) are anticancer agents. In this study, we demonstrate that sirt1 knockout mouse embryonic fibroblast cells are more sensitive to FU and DNA methylating agents than normal cells.

View Article and Find Full Text PDF

Hepatic gluconeogenesis is crucial to maintain normal blood glucose during periods of nutrient deprivation. Gluconeogenesis is controlled at multiple levels by a variety of signal transduction and transcriptional pathways. However, dysregulation of these pathways leads to hyperglycemia and type 2 diabetes.

View Article and Find Full Text PDF

Oxidative DNA damage is repaired primarily by the base excision repair (BER) pathway in a process initiated by removal of base lesions or mismatched bases by DNA glycosylases. MutY homolog (MYH, MUTYH, or Myh1) is a DNA glycosylase which excises adenine paired with the oxidative lesion 8-oxo-7,8-dihydroguanine (8-oxoG, or G°), thus reducing G:C to T:A mutations. The resulting apurinic/apyrimidinic (AP) site is processed by an AP-endonuclease or a bifunctional glycosylase/lyase.

View Article and Find Full Text PDF

MutY DNA glycosylase homologs (MYH or MUTYH) reduce G:C to T:A mutations by removing misincorporated adenines or 2-hydroxyadenines paired with guanine or 8-oxo-7,8-dihydroguanine (8-oxo-G). Mutations in the human MYH (hMYH) gene are associated with the colorectal cancer predisposition syndrome MYH-associated polyposis. To examine the function of MYH in human cells, we regulated MYH gene expression by knockdown or overproduction.

View Article and Find Full Text PDF

MutY homologue (MYH) is a DNA glycosylase which excises adenine paired with the oxidative lesion 7,8-dihydro-8-oxoguanine (8-oxoG, or G(o)) during base excision repair (BER). Base excision by MYH results in an apurinic/apyrimidinic (AP) site in the DNA where the DNA sugar-phosphate backbone remains intact. A key feature of MYH activity is its physical interaction and coordination with AP endonuclease I (APE1), which subsequently nicks DNA 5' to the AP site.

View Article and Find Full Text PDF

TDG (thymine DNA glycosylase) is an essential multifunctional enzyme involved in DNA base excision repair, DNA demethylation and transcription regulation. TDG is the predominant enzyme that removes thymine from T/G mispair, which arises due to deamination of 5-methyl-cytosine at the CpG dinucleotide, thereby preventing C to T mutations. SIRT1 is a member of class III NAD+-dependent histone/protein deacetylases.

View Article and Find Full Text PDF

A number of factors have been identified that increase the risk of hepatocellular carcinoma (HCC). Recently it has become appreciated that type II diabetes increases the risk of developing HCC. This represents a patient population that can be identified and targeted for cancer prevention.

View Article and Find Full Text PDF

Arsenic is an environmental pollutant with carcinogenic properties that is found in many regions of the world but that poses a health risk primarily in economically disadvantaged areas. In these areas, arsenic ingestion affects various tissues, especially skin in which it acts as a comutagen with the ultraviolet component of solar radiation. Both epidemiological and experimental evidence indicates that arsenic and ultraviolet radiation act on signaling pathways that effect the expression of cyclin D1.

View Article and Find Full Text PDF

The thiazolidedione (TZD) class of drugs is clinically approved for the treatment of type 2 diabetes. The therapeutic actions of TZDs are mediated via activation of peroxisome proliferator-activated receptor γ (PPARγ). Despite their widespread use, concern exists regarding the safety of currently used TZDs.

View Article and Find Full Text PDF

Despite the role of aerobic glycolysis in cancer, recent studies highlight the importance of the mitochondria and biosynthetic pathways as well. PPARγ coactivator 1α (PGC1α) is a key transcriptional regulator of several metabolic pathways including oxidative metabolism and lipogenesis. Initial studies suggested that PGC1α expression is reduced in tumors compared with adjacent normal tissue.

View Article and Find Full Text PDF

We show that a single low-dose exposure of human epidermal keratinocytes (NHEK) to an FS20 light source in vitro can induce the formation of mitochondrial DNA deletions in a PCR detection assay. We used primer sets specifically designed to exclude amplification of segments containing the common deletion, but which could detect possibly lower abundance deletions generated within the same region of the mitochondrial genome. We characterized eight novel deletions of which six were generated from cut sites within, or adjacent to, short direct repeats.

View Article and Find Full Text PDF

Solar radiation can lead to changes affecting DNA metabolism resulting in loss of DNA integrity. Skin specimens obtained from melanoma patients treated at the Memorial Sloan-Kettering Cancer Center were used to study patterns of DNA fragmentation using the comet assay and levels of deletions in mitochondrial DNA (mtDNA) using real-time PCR. Skin specimens were classified according to the glutathione S-transferase M1 (GSTM1) genotype (either wild type [WT] or null) and patient sunburn history.

View Article and Find Full Text PDF

Introduction: A retrospective study of nucleotide sequence alterations in exons 7-9 of the E-cadherin gene and expression of E-cadherin and beta-catenin in gastric tumors from African American, Asian, Causcasian and Hispanic patients was carried out to determine differences potentially related to race/ethnicity in these groups.

Methods: Paraffin-embedded tissue sections archived at the Memorial Sloan Kettering Cancer Center were used for immunohistochemical staining of sections for membranous E-cadherin protein and nuclear localization of beta-catenin. DNA from tumor tissue extracted from the paraffin sections was used as template for amplification of the E-cadherin gene exonic regions.

View Article and Find Full Text PDF