ACS Appl Mater Interfaces
December 2022
Sensing biomarkers in exhaled breath offers a potentially portable, cost-effective, and noninvasive strategy for disease diagnosis screening and monitoring, while high sensitivity, wide sensing range, and target specificity are critical challenges. We demonstrate a deep learning-assisted plasmonic sensing platform that can detect and quantify gas-phase biomarkers in breath-related backgrounds of varying complexity. The sensing interface consisted of Au/SiO nanopillars covered with a 15 nm metal-organic framework.
View Article and Find Full Text PDFWe demonstrate that photoemission properties of p-type GaAs can be altered by surface acoustic waves (SAWs) generated on the GaAs surface due to dynamical piezoelectric fields of SAWs. Multiphysics simulations indicate that charge-carrier recombination is greatly reduced, and electron effective lifetime in p-doped GaAs may increase by a factor of 10× to 20×. It implies a significant increase, by a factor of 2× to 3×, of quantum efficiency (QE) for GaAs photoemission applications, like GaAs photocathodes.
View Article and Find Full Text PDFNanoscale Adv
September 2019
Surface acoustic waves (SAWs) have been widely studied due to their unique advantage to couple the mechanical, electrical, and optical characteristics of semiconductor materials and have successfully been used in many industrial applications. In this work, we report a design that uses piezoelectric material Zinc Oxide (ZnO) to enhance the generation and propagation of SAWs on the surface of a highly doped p-type Gallium Arsenide (GaAs) substrate, which is more extensively used in optoelectronic devices than intrinsic GaAs structures. To maximize the piezoelectricity and successfully generate SAWs, high quality -axis orientation of the ZnO film is needed; thus we experiment and develop optimized recipes of a radio frequency (RF) magnetron sputtering system to deposit ZnO on the GaAs substrate.
View Article and Find Full Text PDF