Adipose-tissue-derived stem cells (ASCs) have received considerable attention due to their easy access, expansion potential, and differentiation capacity. ASCs are believed to have the potential to differentiate into neurons. However, the mechanisms by which this may occur remain largely unknown.
View Article and Find Full Text PDFMethods Mol Biol
September 2012
The stromal compartment of adipose tissue harbors mesenchymal stem cells (MSCs) (also called stromal stem cells) that display extensive proliferative capacity and multilineage differentiation potential. Such cells offer a practical avenue of generating patient-matched tissue for use in regenerative medicine. It is relatively easy to isolate these cells from adipose tissue in large enough quantities (tens of millions) to allow for their clinical use in a native, uncultured form.
View Article and Find Full Text PDFMesenchymal stem cells (MSCs) can differentiate into multiple mesodermal cell types in vitro; however, their differentiation capacity is influenced by their tissue of origin. To what extent epigenetic information on promoters of lineage-specification genes in human progenitors influences transcriptional activation and differentiation potential remains unclear. We produced bisulfite sequencing maps of DNA methylation in adipogenic, myogenic, and endothelial promoters in relation to gene expression and differentiation capacity, and unravel a similarity in DNA methylation profiles between MSCs isolated from human adipose tissue, bone marrow (BM), and muscle.
View Article and Find Full Text PDFThe differentiation capacity of mesenchymal stem cells has been extensively studied, but little is known on cell cycle-related events in the proliferation and differentiation phases of these cells. Here, we demonstrate that exposure to cAMP-increasing agents inhibits proliferation of adipose stem cells (ASCs). This antiproliferative effect is associated with both reduced cdk2 activity and pRB phosphorylation.
View Article and Find Full Text PDFTwo media used to mature adult porcine oocytes for somatic cell nuclear transfer were compared. In the first experiment, parthenogenetic embryos were produced using a maturation medium used by us previously to clone pigs (OMM199) and that described by Kühholzer et al. (2001) to transport oocytes overnight (BOMED).
View Article and Find Full Text PDFStem Cell Rev
October 2007
Stromal stem cells identified in various adult mesenchymal tissues (commonly called mesenchymal stem cells [MSCs]) have in past years received more attention as a result of their potential interest as replacement cells in regenerative medicine. An abundant and easily accessible source of adult human MSCs are stem cells harvested from liposuction material. Similarly to bone marrow-derived MSCs, human adipose tissue-derived stem cells (ASCs) can give rise to a variety of cell types in vitro and in vivo; however, they have a propensity to differentiate into primarily mesodermal lineages.
View Article and Find Full Text PDFBackground: Potential therapeutic use of mesenchymal stem cells (MSCs) is likely to require large-scale in vitro expansion of the cells before transplantation. MSCs from adipose tissue can be cultured extensively until senescence. However, little is known on the differentiation potential of adipose stem cells (ASCs) upon extended culture and on associated epigenetic alterations.
View Article and Find Full Text PDFIn vivo endothelial commitment of adipose stem cells (ASCs) has scarcely been reported, and controversy remains on the contribution of ASCs to vascularization. We address the epigenetic commitment of ASCs to the endothelial lineage. We report a bisulfite sequencing analysis of CpG methylation in the promoters of two endothelial-cell-specific genes, CD31 and CD144, in freshly isolated and in cultures of ASCs before and after induction of endothelial differentiation.
View Article and Find Full Text PDFThe functional reprogramming of a differentiated cell to pluripotency may present beneficial applications in regenerative medicine. Somatic cell nuclear transfer may offer this possibility, but technical hurdles and ethical guidelines currently prevent application of this technology in several countries. As a result, alternative approaches are being developed for altering cell fate.
View Article and Find Full Text PDFThe stromal compartment of mesenchymal tissues is thought to harbor stem cells that display extensive proliferative capacity and multilineage potential. Stromal stem cells offer a potentially large therapeutic potential in the field of regenerative medicine. Adipose tissue contains a large number of stromal stem cells, is relatively easy to obtain in large quantities, and thus constitutes a very convenient source of stromal stem cells.
View Article and Find Full Text PDFMesenchymal stem cells from adipose tissue can differentiate into mesodermal lineages. Differentiation potential, however, varies between clones of adipose stem cells (ASCs), raising the hypothesis that epigenetic differences account for this variability. We report here a bisulfite sequencing analysis of CpG methylation of adipogenic (leptin [LEP], peroxisome proliferator-activated receptor gamma 2 [PPARG2], fatty acid-binding protein 4 [FABP4], and lipoprotein lipase [LPL]) promoters and of nonadipogenic (myogenin [MYOG], CD31, and GAPDH) loci in freshly isolated human ASCs and in cultured ASCs, in relation to gene expression and differentiation potential.
View Article and Find Full Text PDFPig fibroblast cells were transferred to enucleated oocytes by micromanipulation and electrofusion. The donor cells used for nuclear transfer were synchronized in presumptive G0 by serum starvation. In the first experiment, nuclear transfer was performed with fibroblasts that had either a smooth or a rough surface.
View Article and Find Full Text PDFOne of the major points of debate in determining the effectiveness of nuclear transfer technology has been the phase of the cell cycle of the donor cell at the time of nuclear transfer. Here, a primary mammary cell line has been isolated and various treatments for synchronization of the cell cycle have been tested. The cells were then simultaneously stained for DNA content and protein content and the percentages of cells in G1, G0, S, and G2 + M were estimated.
View Article and Find Full Text PDFFunctional reprogramming of a differentiated cell toward pluripotency may have long-term applications in regenerative medicine. We report the induction of dedifferentiation, associated with genomewide programming of gene expression and epigenetic reprogramming of an embryonic gene, in epithelial 293T cells treated with an extract of undifferentiated human NCCIT carcinoma cells. 293T cells exposed for 1 h to extract of NCCIT cells, but not of 293T or Jurkat T-cells, form defined colonies that are maintained for at least 23 passages in culture.
View Article and Find Full Text PDFWe have reported relatively efficient methods for somatic cell nuclear transfer and for knocking out the alpha(1,3)-galactosyltransferase (alpha1,3-GT) gene in porcine fetal fibroblasts using a nonisogenic promoterless construct approach. Here we report the production of alpha1,3-GT gene knockout pigs using these procedures. Seven alpha1,3-GT gene knockout cell clones were identified by long-range PCR from 108 neomycin resistant (neo(R)) colonies, giving a 6.
View Article and Find Full Text PDFStromal stem cells proliferate in vitro and may be differentiated along several lineages. Freshly isolated, these cells have been too few or insufficiently pure to be thoroughly characterized. Here, we have isolated two populations of CD45-CD34+CD105+ cells from human adipose tissue which could be separated based on expression of CD31.
View Article and Find Full Text PDFBiochem Biophys Res Commun
February 2004
We report the differentiation of human adipose tissue stem cells (ATSCs) to take on cardiomyocyte properties following transient exposure to a rat cardiomyocyte extract. Reversibly permeabilized ATSCs were incubated for 1h in a nuclear and cytoplasmic extract of rat cardiomyocytes, resealed with CaCl(2), and cultured. Three weeks after exposure to extract, ATSCs expressed several cardiomyocyte markers including sarcomeric alpha-actinin, desmin, and cardiac troponin I, and displayed targeted expression of the gap junction protein connexin 43.
View Article and Find Full Text PDFThe developmental competence of oocytes recovered from the ovaries of slaughtered prepubertal and adult pigs was evaluated after in vitro maturation, parthenogenetic activation and culture in vitro. In addition, the effect of prepubertal and adult follicular fluid (FF) on the developmental competence of prepubertal and adult oocytes was investigated. When matured in adult FF, the rates of cleavage (92 v.
View Article and Find Full Text PDFSomatic cell nuclear transfer was used to produce live piglets from cultured fetal fibroblast cells. This was achieved by exposing donor cell nuclei to oocyte cytoplasm for approximately 3 h before activation by chemical means. Initially, an experiment was performed to optimize a cell fusion system that prevented concurrent activation in the majority of recipient cytoplasts.
View Article and Find Full Text PDFThe present study examined the ability to establish pregnancies after transfer of pig embryos derived from in vitro fertilization (IVF) of in vitro matured (IVM) oocytes by X and Y chromosome-bearing spermatozoa sorted by flow cytometry. Cumulus-oocyte complexes (COC) were cultured in BSA-free NCSU-23 medium containing porcine follicular fluid (10%), cysteine (0.1 mg/mL), epidermal growth factor (10 ng/mL), LH (0.
View Article and Find Full Text PDFThis study evaluated the effect of adding reduced glutathione (GSH) during sperm washing and insemination on the subsequent fertilization dynamics and development of IVM porcine oocytes. Follicular oocytes were matured in vitro in NCSU 23 medium with porcine follicular fluid, cysteine and hormone supplements for 22 h. They were then matured in the same medium but without hormones for another 22 h.
View Article and Find Full Text PDFThe effects of bovine oviductal proteins on bull sperm viability, acrosome reaction and motility were studied. Motile frozen/thawed spermatozoa from Percoll gradients were incubated with 1.0 mg/mL oviductal proteins (>8 kDa) extracted by ammonium sulphate precipitation from oviductal extract (OE) or serum-free oviductal epithelial cell-conditioned media (CM), treated in the presence (CM+) or absence (CM-) of 1 microg/mL 17beta-estradiol.
View Article and Find Full Text PDFThe effect of 17beta-oestradiol and oestrous stage-specific cow serum on bovine oviductal epithelial cell monolayers to extend the viability of co-cultured bull spermatozoa was examined. Monolayers of cells from ampullary and isthmic segments were pre-treated with medium containing either oestrous cow serum, luteal-phase cow serum, 1 microg/ml 17beta-oestradiol + foetal bovine serum or foetal bovine serum alone (control) before the addition of motile frozen/thawed spermatozoa. Motility was visually assessed throughout a 48 h co-incubation period, while fertilising ability of spermatozoa was evaluated by adding in vitro matured bovine oocytes.
View Article and Find Full Text PDFNuclear transfer as originally developed for use in amphibians involved microinjecting a nucleus directly into the cytoplasm of the oocyte. A major mammalian modification has been to use cell fusion to introduce the nucleus. Here we report using a microinjection method to introduce small and medium sized fibroblast cells into mature oocytes.
View Article and Find Full Text PDF