Publications by authors named "Boothman D"

Background: Triple negative breast cancer (TNBC), characterized by the lack of three canonical receptors, is unresponsive to commonly used hormonal therapies. One potential TNBC-specific therapeutic target is NQO1, as it is highly expressed in many TNBC patients and lowly expressed in non-cancer tissues. DNA damage induced by NQO1 bioactivatable drugs in combination with Rucaparib-mediated inhibition of PARP1-dependent DNA repair synergistically induces cell death.

View Article and Find Full Text PDF

The compound β-lapachone, a naturally derived naphthoquinone, has been utilized as a potent medicinal nutrient to improve health. Over the last twelve years, numerous reports have demonstrated distinct associations of β-lapachone and NAD(P)H: quinone oxidoreductase 1 (NQO1) protein in the amelioration of various diseases. Comprehensive research of NQO1 bioactivity has clearly confirmed the tumoricidal effects of β-lapachone action through NAD-keresis, in which severe DNA damage from reactive oxygen species (ROS) production triggers a poly-ADP-ribose polymerase-I (PARP1) hyperactivation cascade, culminating in NAD/ATP depletion.

View Article and Find Full Text PDF

Redox cofactor production is integral toward antioxidant generation, clearance of reactive oxygen species, and overall tumor response to ionizing radiation treatment. To identify systems-level alterations in redox metabolism that confer resistance to radiation therapy, we developed a bioinformatics pipeline for integrating multi-omics data into personalized genome-scale flux balance analysis models of 716 radiation-sensitive and 199 radiation-resistant tumors. These models collectively predicted that radiation-resistant tumors reroute metabolic flux to increase mitochondrial NADPH stores and reactive oxygen species (ROS) scavenging.

View Article and Find Full Text PDF

Head and Neck Squamous Cell Cancer (HNSCC) presents with multiple treatment challenges limiting overall survival rates and affecting patients' quality of life. Amongst these, resistance to radiation therapy constitutes a major clinical problem in HNSCC patients compounded by origin, location, and tumor grade that limit tumor control. While cisplatin is considered the standard radiosensitizing agent for definitive or adjuvant radiotherapy, in recurrent tumors or for palliative care other chemotherapeutics such as the antifolates methotrexate or pemetrexed are also being utilized as radiosensitizers.

View Article and Find Full Text PDF

Ionizing radiation (IR) creates lethal DNA damage that can effectively kill tumor cells. However, the high dose required for a therapeutic outcome also damages healthy tissue. Thus, a therapeutic strategy with predictive biomarkers to enhance the beneficial effects of IR allowing a dose reduction without losing efficacy is highly desirable.

View Article and Find Full Text PDF

Alterations in the NRF2/KEAP1 pathway result in the constitutive activation of NRF2, leading to the aberrant induction of antioxidant and detoxification enzymes, including NQO1. The NQO1 bioactivatable agent β-lapachone can target cells with high NQO1 expression but relies in the generation of reactive oxygen species (ROS), which are actively scavenged in cells with NRF2/KEAP1 mutations. However, whether NRF2/KEAP1 mutations influence the response to β-lapachone treatment remains unknown.

View Article and Find Full Text PDF

Lack of proper innate sensing inside tumor microenvironment (TME) limits T cell-targeted immunotherapy. NAD(P)H:quinone oxidoreductase 1 (NQO1) is highly enriched in multiple tumor types and has emerged as a promising target for direct tumor-killing. Here, we demonstrate that NQO1-targeting prodrug β-lapachone triggers tumor-selective innate sensing leading to T cell-dependent tumor control.

View Article and Find Full Text PDF

Chemotherapy and radiation are more effective in wild-type (WT) p53 tumors due to p53 activation. This is one rationale for developing drugs that reactivate mutant p53 to synergize with chemotherapy and radiation. Zinc metallochaperones (ZMC) are a new class of mutant p53 reactivators that restore WT structure and function to zinc-deficient p53 mutants.

View Article and Find Full Text PDF

Purpose: Development of tumor-specific therapies for the treatment of recalcitrant non-small cell lung cancers (NSCLC) is urgently needed. Here, we investigated the ability of β-lapachone (β-lap, ARQ761 in clinical form) to selectively potentiate the effects of ionizing radiation (IR, 1-3 Gy) in NSCLCs that overexpress NAD(P)H:Quinone Oxidoreductase 1 (NQO1).

Experimental Design: The mechanism of lethality of low-dose IR in combination with sublethal doses of β-lap was evaluated in NSCLC lines and validated in subcutaneous and orthotopic xenograft models .

View Article and Find Full Text PDF

Nicotinamide adenine dinucleotide (NAD) metabolism is integrally connected with the mechanisms of action of radiation therapy and is altered in many radiation-resistant tumors. This makes NAD metabolism an ideal target for therapies that increase radiation sensitivity and improve patient outcomes. This review provides an overview of NAD metabolism in the context of the cellular response to ionizing radiation, as well as current therapies that target NAD metabolism to enhance radiation therapy responses.

View Article and Find Full Text PDF

Background: NAD(P)H:quinone oxidoreductase 1 (NQO1) is a two-electron oxidoreductase expressed in multiple tumour types. ARQ 761 is a β-lapachone (β-lap) analogue that exploits the unique elevation of NQO1 found in solid tumours to cause tumour-specific cell death.

Methods: We performed a 3+3 dose escalation study of 3 schedules (weekly, every other week, 2/3 weeks) of ARQ 761 in patients with refractory advanced solid tumours.

View Article and Find Full Text PDF

Purpose: Identification of novel strategies to expand the use of PARP inhibitors beyond BRCA deficiency is of great interest in personalized medicine. Here, we investigated the unannotated role of Kub5-Hera (K-H) in homologous recombination (HR) repair and its potential clinical significance in targeted cancer therapy.

Experimental Design: Functional characterization of K-H alterations on HR repair of double-strand breaks (DSB) were assessed by targeted gene silencing, plasmid reporter assays, immunofluorescence, and Western blots.

View Article and Find Full Text PDF

There is a great need to track the selectivity of anticancer drug activity and to understand the mechanisms of associated biological activity. Here we focus our studies on the specific NQO1 bioactivatable drug, ß-lapachone, which is in several Phase I clinical trials to treat human non-small cell lung, pancreatic and breast cancers. Multi-electrode chips with electrochemically-active DNA monolayers are used to track anticancer drug activity in cellular lysates and correlate cell death activity with DNA damage.

View Article and Find Full Text PDF

Significance: Head and neck squamous cell cancer (HNSCC) is a complex disease characterized by high genetic and metabolic heterogeneity. Radiation therapy (RT) alone or combined with systemic chemotherapy is widely used for treatment of HNSCC as definitive treatment or as adjuvant treatment after surgery. Antibodies against epidermal growth factor receptor are used in definitive or palliative treatment.

View Article and Find Full Text PDF

Many cancer treatments, such as those for managing recalcitrant tumors like pancreatic ductal adenocarcinoma, cause off-target toxicities in normal, healthy tissue, highlighting the need for more tumor-selective chemotherapies. β-Lapachone is bioactivated by NAD(P)H:quinone oxidoreductase 1 (NQO1). This enzyme exhibits elevated expression in most solid cancers and therefore is a potential cancer-specific target.

View Article and Find Full Text PDF

Aims: The purpose of this study was to investigate differential nicotinamide adenine dinucleotide phosphate, reduced (NADPH) production between radiation-sensitive and -resistant head and neck squamous cell carcinoma (HNSCC) cell lines and whether these differences are predictive of sensitivity to the chemotherapeutic β-lapachone.

Results: We have developed a novel human genome-scale metabolic modeling platform that combines transcriptomic, kinetic, thermodynamic, and metabolite concentration data. Upon incorporation of this information into cell line-specific models, we observed that the radiation-resistant HNSCC model redistributed flux through several major NADPH-producing reactions.

View Article and Find Full Text PDF

β-Lapachone (β-lap), a novel anticancer agent, is bioactivated by NADP(H):quinone oxidoreductase 1 (NQO1), an enzyme over-expressed in numerous tumors, including lung, pancreas, breast, and prostate cancers. Fast renal clearance and methemaglobinemia / hemolytic side-effects from the clinical formulation (β-lap-hydroxyl propyl-β-cyclodextrin complex) hindered its clinical translation. Here, we investigated a dual model pH responsive polymers for β-lap delivery.

View Article and Find Full Text PDF

Novel, tumor-selective therapies are needed to increase the survival rate of pancreatic cancer patients. K-Ras-mutant-driven NAD(P)H:quinone oxidoreductase 1 (NQO1) is over-expressed in pancreatic tumor versus associated normal tissue, while catalase expression is lowered compared to levels in associated normal pancreas tissue. ARQ761 undergoes a robust, futile redox cycle in NQO1+ cancer cells, producing massive hydrogen peroxide (H O ) levels; normal tissues are spared by low NQO1 and high catalase expression.

View Article and Find Full Text PDF

Tremendous progress has been made in the development of delivery carriers for small RNA therapeutics. However, most achievements have focused on the treatment of liver-associated diseases because conventional lipid and lipidoid nanoparticles (LNPs) readily accumulate in the liver after intravenous (i.v.

View Article and Find Full Text PDF

Therapeutic drugs that block DNA repair, including poly(ADP-ribose) polymerase (PARP) inhibitors, fail due to lack of tumor-selectivity. When PARP inhibitors and β-lapachone are combined, synergistic antitumor activity results from sustained NAD(P)H levels that refuel NQO1-dependent futile redox drug recycling. Significant oxygen-consumption-rate/reactive oxygen species cause dramatic DNA lesion increases that are not repaired due to PARP inhibition.

View Article and Find Full Text PDF

XRN2 is a 5'-3' exoribonuclease implicated in transcription termination. Here we demonstrate an unexpected role for XRN2 in the DNA damage response involving resolution of R-loop structures and prevention of DNA double-strand breaks (DSBs). We show that XRN2 undergoes DNA damage-inducible nuclear re-localization, co-localizing with 53BP1 and R loops, in a transcription and R-loop-dependent process.

View Article and Find Full Text PDF

Unlabelled: Selenium-containing quinone-based 1,2,3-triazoles were synthesized using click chemistry, the copper catalyzed azide-alkyne 1,3-dipolar cycloaddition, and evaluated against six types of cancer cell lines: HL-60 (human promyelocytic leukemia cells), HCT-116 (human colon carcinoma cells), PC3 (human prostate cells), SF295 (human glioblastoma cells), MDA-MB-435 (melanoma cells) and OVCAR-8 (human ovarian carcinoma cells). Some compounds showed IC50 values < 0.3 μM.

View Article and Find Full Text PDF

Cancer cells have an increased reliance on lipogenesis, which is required for uncontrolled cell division. We recently reported transcriptional and functional 'reprogramming' of the cellular energy grid, allowing cancer cells to divert metabolism from biosynthesis to bioenergetic pathways and thus supplying enhanced mobility during epithelial-mesenchymal transition (EMT) induced by transforming growth factor β (TGF-β1) (Fig. 1).

View Article and Find Full Text PDF

Purpose: Non-small cell lung cancer (NSCLC) is the leading cause of cancer-related deaths worldwide due to the limited availability of effective therapeutic options. For instance, there are no effective strategies for NSCLCs that harbor mutant KRAS, the most commonly mutated oncogene in NSCLC. Thus, our purpose was to make progress toward the generation of a novel therapeutic strategy for NSCLC.

View Article and Find Full Text PDF

Unlabelled: Ionizing radiation (IR) is a key therapeutic regimen for many head and neck cancers (HNC). However, the 5-year overall survival rate for locally advanced HNCs is approximately 50% and better therapeutic efficacy is needed.

Nad(p)h: quinone oxidoreductase 1 (NQO1) is overexpressed in many cancers, and β-lapachone (β-lap), a unique NQO1 bioactivatable drug, exploits this enzyme to release massive reactive oxygen species (ROS) that synergize with IR to kill by programmed necrosis.

View Article and Find Full Text PDF