Osteoarthritis Cartilage
May 2021
Objective: Cartilage in joints such as the hip and knee experiences repeated phases of heavy loading and low load recovery during the 24-h day/night cycle. Our previous work has shown 24 h rhythmic changes in gene expression at transcript level between night and day in wild type mouse cartilage which is lost in a circadian clock knock-out mouse model. However, it remains unknown to what extent circadian rhythms also regulate protein level gene expression in this matrix rich tissue.
View Article and Find Full Text PDFCysteine-rich with epidermal growth factor (EGF)-like domains 2 (CRELD2) is an endoplasmic reticulum (ER)-resident chaperone highly activated under ER stress in conditions such as chondrodysplasias; however, its role in healthy skeletal development is unknown. We show for the first time that cartilage-specific deletion of Creld2 results in disrupted endochondral ossification and short limbed dwarfism, whereas deletion of Creld2 in bone results in osteopenia, with a low bone density and altered trabecular architecture. Our study provides the first evidence that CRELD2 promotes the differentiation and maturation of skeletal cells by modulating noncanonical WNT4 signaling regulated by p38 MAPK.
View Article and Find Full Text PDFBackground: Osteoarthritis has been associated with a plethora of pathological factors and one which has recently emerged is chondrocyte endoplasmic reticulum (ER) stress. ER stress is sensed by key ER-resident stress sensors, one of which is activating transcription factor 6 (ATF6). The purpose of this study is to determine whether increased ER stress plays a role in OA.
View Article and Find Full Text PDFThe unfolded protein response (UPR) is a conserved cellular response to the accumulation of proteinaceous material in endoplasmic reticulum (ER), active both in health and disease to alleviate cellular stress and improve protein folding. Multiple epiphyseal dysplasia (EDM5) is a genetic skeletal condition and a classic example of an intracellular protein aggregation disease, whereby mutant matrilin-3 forms large insoluble aggregates in the ER lumen, resulting in a specific 'disease signature' of increased expression of chaperones and foldases, and alternative splicing of the UPR effector XBP1. Matrilin-3 is expressed exclusively by chondrocytes thereby making EDM5 a perfect model system to study the role of protein aggregation in disease.
View Article and Find Full Text PDFInt J Exp Pathol
February 2019
This review, based on the BSMB Fell-Muir Lecture I presented in July 2018 at the Matrix Biology Europe Conference in Manchester, gives a personal perspective of my own laboratory's contributions to research into type X collagen, metaphyseal chondrodysplasia type Schmid and potential treatments for this disorder that are currently entering clinical trial. I have tried to set the advances made in the context of the scientific technologies available at the time and how these have changed over the more than three decades of this research.
View Article and Find Full Text PDFCell Stress Chaperones
January 2019
Mesencephalic astrocyte-derived neurotrophic factor (MANF) is an endoplasmic reticulum (ER) resident protein that can be secreted due to an imperfect KDEL motif. MANF plays a cytoprotective role in several soft tissues and is upregulated in conditions resulting from intracellular retention of mutant protein, including two skeletal diseases, metaphyseal chondrodysplasia, Schmid type (MCDS) and multiple epiphyseal dysplasia (MED). The role of MANF in skeletal tissue homeostasis is currently unknown.
View Article and Find Full Text PDFMotivation: Skeletal diseases are prevalent in society, but improved molecular understanding is required to formulate new therapeutic strategies. Large and increasing quantities of available skeletal transcriptomics experiments give the potential for mechanistic insight of both fundamental skeletal biology and skeletal disease. However, no current repository provides access to processed, readily interpretable analysis of this data.
View Article and Find Full Text PDFFibrillin microfibrils are extracellular matrix assemblies that form the template for elastic fibres, endow blood vessels, skin and other elastic tissues with extensible properties. They also regulate the bioavailability of potent growth factors of the TGF-β superfamily. A disintegrin and metalloproteinase with thrombospondin motifs (ADAMTS)10 is an essential factor in fibrillin microfibril function.
View Article and Find Full Text PDFMutations, mostly in the region of the COL10A1 gene encoding the C-terminal non-collagenous domain, cause the dwarfism metaphyseal chondrodysplasia type Schmid (MCDS). In most cases, the disease mechanism involves the misfolding of the mutant protein causing increased endoplasmic reticulum (ER) stress and an unfolded protein response (UPR). However, in an iliac crest biopsy, the COL10A1 p.
View Article and Find Full Text PDFWhilst the role of ATF6α in modulating the unfolded protein response (UPR) has been well documented, the function of its paralogue ATF6β is less well understood. Using knockdown in cell culture and gene ablation in mice we have directly compared the roles of ATF6α & β in responding to the increased ER stress induced by mutant forms of type X collagen that cause the ER stress-associated metaphyseal chondrodysplasia type Schmid (MCDS). ATF6α more efficiently deals with the disease-associated ER stress in the absence of ATF6β and conversely, ATF6β is less effective in the absence of ATF6α.
View Article and Find Full Text PDFIntroduction: Osteoarthritis (OA) is a heterogeneous and complex disease. We have used a network biology approach based on genome-wide analysis of gene expression in OA knee cartilage to seek evidence for pathogenic mechanisms that may distinguish different patient subgroups.
Methods: Results from RNA-Sequencing (RNA-Seq) were collected from intact knee cartilage at total knee replacement from 44 patients with OA, from 16 additional patients with OA and 10 control patients with non-OA.
Bone remodeling is a balanced process between bone synthesis and degradation, maintaining homeostasis and a constant bone mass in adult life. Imbalance will lead to conditions such as osteoporosis or hyperostosis. Osteoblasts build bone, becoming embedded in bone matrix as mature osteocytes.
View Article and Find Full Text PDFThe short-limbed dwarfism metaphyseal chondrodysplasia type Schmid (MCDS) is linked to mutations in type X collagen, which increase ER stress by inducing misfolding of the mutant protein and subsequently disrupting hypertrophic chondrocyte differentiation. Here, we show that carbamazepine (CBZ), an autophagy-stimulating drug that is clinically approved for the treatment of seizures and bipolar disease, reduced the ER stress induced by 4 different MCDS-causing mutant forms of collagen X in human cell culture. Depending on the nature of the mutation, CBZ application stimulated proteolysis of misfolded collagen X by either autophagy or proteasomal degradation, thereby reducing intracellular accumulation of mutant collagen.
View Article and Find Full Text PDFUnlabelled: PhenomeScape is a Cytoscape app which provides easy access to the PhenomeExpress algorithm to interpret gene expression data. PhenomeExpress integrates protein interaction networks with known phenotype to gene associations to find active sub-networks enriched in differentially expressed genes. It also incorporates cross-species phenotypes and associations to include results from animal models of disease.
View Article and Find Full Text PDFObjectives: The circadian clocks are internal timing mechanisms that drive ∼24-hour rhythms in a tissue-specific manner. Many aspects of the physiology of the intervertebral disc (IVD) show clear diurnal rhythms. However, it is unknown whether IVD tissue contains functional circadian clocks and if so, how their dysregulation is implicated in IVD degeneration.
View Article and Find Full Text PDFTranscriptional-translational feedback loops (TTFLs) are a conserved molecular motif of circadian clocks. The principal clock in mammals is the suprachiasmatic nucleus (SCN) of the hypothalamus. In SCN neurons, auto-regulatory feedback on core clock genes Period (Per) and Cryptochrome (Cry) following nuclear entry of their protein products is the basis of circadian oscillation [1, 2].
View Article and Find Full Text PDFObjectives: Joint degeneration in osteoarthritis (OA) is characterised by damage and loss of articular cartilage. The pattern of loss is consistent with damage occurring only where the mechanical loading is high. We have investigated using RNA-sequencing (RNA-seq) and systems analyses the changes that occur in damaged OA cartilage by comparing it with intact cartilage from the same joint.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most prevalent and debilitating joint disease, and there are currently no effective disease-modifying treatments available. Multiple risk factors for OA, such as aging, result in progressive damage and loss of articular cartilage. Autonomous circadian clocks have been identified in mouse cartilage, and environmental disruption of circadian rhythms in mice predisposes animals to OA-like damage.
View Article and Find Full Text PDFObjective: To define how the catabolic cytokines (Interleukin 1 (IL-1) and tumor necrosis factor alpha (TNFα)) affect the circadian clock mechanism and the expression of clock-controlled catabolic genes within cartilage, and to identify the downstream pathways linking the cytokines to the molecular clock within chondrocytes.
Methods: Ex vivo cartilage explants were isolated from the Cry1-luc or PER2::LUC clock reporter mice. Clock gene dynamics were monitored in real-time by bioluminescence photon counting.
Schmid metaphyseal chondrodysplasia (MCDS) involves dwarfism and growth plate cartilage hypertrophic zone expansion resulting from dominant mutations in the hypertrophic zone collagen, Col10a1. Mouse models phenocopying MCDS through the expression of an exogenous misfolding protein in the endoplasmic reticulum (ER) in hypertrophic chondrocytes have demonstrated the central importance of ER stress in the pathology of MCDS. The resultant unfolded protein response (UPR) in affected chondrocytes involved activation of canonical ER stress sensors, IRE1, ATF6, and PERK with the downstream effect of disrupted chondrocyte differentiation.
View Article and Find Full Text PDFMutations in genes encoding cartilage oligomeric matrix protein and matrilin-3 cause a spectrum of chondrodysplasias called multiple epiphyseal dysplasia (MED) and pseudoachondroplasia (PSACH). The majority of these diseases feature classical endoplasmic reticulum (ER) stress and activation of the unfolded protein response (UPR) as a result of misfolding of the mutant protein. However, the importance and the pathological contribution of ER stress in the disease pathogenesis are unknown.
View Article and Find Full Text PDFWe describe a new method, PhenomeExpress, for the analysis of transcriptomic datasets to identify pathogenic disease mechanisms. Our analysis method includes input from both protein-protein interaction and phenotype similarity networks. This introduces valuable information from disease relevant phenotypes, which aids the identification of sub-networks that are significantly enriched in differentially expressed genes and are related to the disease relevant phenotypes.
View Article and Find Full Text PDFObjective: To investigate the in vivo role of the IRE1/XBP1 unfolded protein response (UPR) signaling pathway in cartilage.
Design: Xbp1(flox/flox).Col2a1-Cre mice (Xbp1(CartΔEx2)), in which XBP1 activity is ablated specifically from cartilage, were analyzed histomorphometrically by Alizarin red/Alcian blue skeletal preparations and X-rays to examine overall bone growth, histological stains to measure growth plate zone length, chondrocyte organization, and mineralization, and immunofluorescence for collagen II, collagen X, and IHH.
The small GTPase RhoA is a major regulator of actin reorganization during the formation of stress fibers; thus identifying molecules that regulate Rho activity is necessary for a complete understanding of the mechanisms that determine cell contractility. Here, we have identified Arhgap28 as a Rho GTPase activating protein (RhoGAP) that switches RhoA to its inactive form. We generated an Arhgap28-LacZ reporter mouse that revealed gene expression in soft tissues at E12.
View Article and Find Full Text PDFOsteoarthritis (OA) is the most common joint disease, affecting articular cartilage of the joints, with currently no cure. Age is a major risk factor for OA, but despite significant advances made in the OA research field, how ageing contributes to OA is still not well understood. In this review, we will focus on one particular aspect of chondrocyte biology, i.
View Article and Find Full Text PDF