Publications by authors named "Boon Louis"

Malignant plasma cells in multiple myeloma patients reside in the bone marrow and continuously interact with local immune cells. Progression and therapy response are influenced by this immune environment, highlighting the need for a detailed understanding of endogenous immune responses to malignant plasma cells. Here we used the 5TGM1 murine transfer model of multiple myeloma to dissect early immune responses to myeloma cells.

View Article and Find Full Text PDF

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular antiviral response which increases viral transcript presence in the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection.

View Article and Find Full Text PDF

Immunologic self-tolerance involves signals from co-inhibitory receptors. Several T cell co-inhibitors, including PD-1, are expressed upon activation, whereas CD5 and BTLA are expressed constitutively. The relationship between constitutively expressed co-inhibitors and when they are needed is unknown.

View Article and Find Full Text PDF

Introduction: Immune checkpoint blockade (ICB) immunotherapy has revolutionized cancer treatment, demonstrating exceptional clinical responses in a wide range of cancers. Despite the success, a significant proportion of patients still fail to respond, highlighting the existence of unappreciated mechanisms of immunotherapy resistance. Delineating such mechanisms is paramount to minimize immunotherapy failures and optimize the clinical benefit.

View Article and Find Full Text PDF

Peptidoglycan (PGN) is a large complex polymer critical to structure and function of all bacterial species. Intact PGN and its fragments are inflammatory, contributing to infectious and autoimmune disease. Recent studies show that PGN physiologically contributes to immune setpoints, and importantly also to mouse brain development and behavior.

View Article and Find Full Text PDF
Article Synopsis
  • APECED is a serious genetic autoimmune disorder linked to variants in the autoimmune regulator (AIRE) gene, with 16% of evaluated patients lacking known harmful variants, most of whom are of Puerto Rican descent.
  • Researchers discovered a deep intronic variant (c.1504-818 G>A) in these patients that causes a cryptic splice site leading to a dysfunctional protein through pseudoexon inclusion.
  • They developed an antisense oligonucleotide (ASO) that corrected this genetic issue, demonstrating the potential for targeted treatments in APECED patients.
View Article and Find Full Text PDF
Article Synopsis
  • Malignant peripheral nerve sheath tumors (MPNST) are tough to treat because they often come back after surgery and don't respond well to regular chemotherapy.
  • A new treatment called oncolytic viroimmunotherapy, which uses viruses to help fight tumors, shows promise but doesn’t work for everyone, so more research is needed to improve it.
  • In experiments, using specific drugs along with the oncolytic virus helped some mice live longer by boosting their immune response against the tumors, leading to less suppressive cells in the tumor area, though the tumors didn’t shrink.
View Article and Find Full Text PDF
Article Synopsis
  • Scientists found a group of special immune cells in tumors called TIM3VISTA tumor-associated macrophages (TAMs) that make it hard for cancer treatments to work.
  • These cells thrive in tumors that don't have many visible markers for the immune system to recognize and fight, which helps the cancer escape being attacked.
  • By blocking these TIM3VISTA TAMs and combining the treatment with a type of chemotherapy, they could change these cells to be more aggressive against cancer, making the treatments more effective.
View Article and Find Full Text PDF

Background: Atherosclerosis is driven by the infiltration of the arterial intima by diverse immune cells and smooth muscle cells (SMCs). CD8 T cells promote lesion growth during atherosclerotic lesion development, but their role in advanced atherosclerosis is less clear. Here, we studied the role of CD8 T cells and their effects on SMCs in established atherosclerosis.

View Article and Find Full Text PDF

Cancer-associated fibroblasts (CAFs) have emerged as a dominant non-hematopoietic cell population in the tumour microenvironment, serving diverse functions in tumour progression. However, the mechanisms via which CAFs influence the anti-tumour immunity remain poorly understood. Here, using multiple tumour models and biopsies from cancer patients, we report that α-SMA CAFs can form immunological synapses with Foxp3 regulatory T cells (Tregs) in tumours.

View Article and Find Full Text PDF

Cancer vaccines have emerged as a potent strategy to improve cancer immunity, with or without the combination of checkpoint blockade. In our investigation, liposomal formulations containing synthetic long peptides and α-Galactosylceramide, along with a DC-SIGN-targeting ligand, Lewis Y (Le), were studied for their anti-tumor potential. The formulated liposomes boosted with anti-CD40 adjuvant demonstrated robust invariant natural killer (iNKT), CD4, and CD8 T-cell activation in vivo.

View Article and Find Full Text PDF

An important challenge in the real-world management of patients with advanced clear-cell renal cell carcinoma (aRCC) is determining who might benefit from immune checkpoint blockade (ICB). Here we performed a comprehensive multiomics mapping of aRCC in the context of ICB treatment, involving discovery analyses in a real-world data cohort followed by validation in independent cohorts. We cross-connected bulk-tumor transcriptomes across >1,000 patients with validations at single-cell and spatial resolutions, revealing a patient-specific crosstalk between proinflammatory tumor-associated macrophages and (pre-)exhausted CD8 T cells that was distinguished by a human leukocyte antigen repertoire with higher preference for tumoral neoantigens.

View Article and Find Full Text PDF

Time-critical transcriptional events in the immune microenvironment are important for response to immune checkpoint blockade (ICB), yet these events are difficult to characterise and remain incompletely understood. Here, we present whole tumor RNA sequencing data in the context of treatment with ICB in murine models of AB1 mesothelioma and Renca renal cell cancer. We sequenced 144 bulk RNAseq samples from these two cancer types across 4 time points prior and after treatment with ICB.

View Article and Find Full Text PDF

Immune checkpoint therapy (ICT) causes durable tumour responses in a subgroup of patients, but it is not well known how T cell receptor beta (TCRβ) repertoire dynamics contribute to the therapeutic response. Using murine models that exclude variation in host genetics, environmental factors and tumour mutation burden, limiting variation between animals to naturally diverse TCRβ repertoires, we applied TCRseq, single cell RNAseq and flow cytometry to study TCRβ repertoire dynamics in ICT responders and non-responders. Increased oligoclonal expansion of TCRβ clonotypes was observed in responding tumours.

View Article and Find Full Text PDF

Background: Protective immunity against intestinal helminths requires induction of robust type-2 immunity orchestrated by various cellular and soluble effectors which promote goblet cell hyperplasia, mucus production, epithelial proliferation, and smooth muscle contractions to expel worms and re-establish immune homeostasis. Conversely, defects in type-2 immunity result in ineffective helminth clearance, persistent infection, and inflammation. Macrophages are highly plastic cells that acquire an alternatively activated state during helminth infection, but they were previously shown to be dispensable for resistance to infection.

View Article and Find Full Text PDF

Increased use of therapeutic monoclonal antibodies and the relatively high manufacturing costs fuel the need for more efficient production methods. Here we introduce a novel, fast, robust, and safe isolation platform for screening and isolating antibody-producing cell lines using a nanowell chip and an innovative single-cell isolation method. An anti-Her2 antibody producing CHO cell pool was used as a model.

View Article and Find Full Text PDF

Lymphatic endothelial cells (LECs) of the lymph node (LN) parenchyma orchestrate leukocyte trafficking and peripheral T cell dynamics. T cell responses to immunotherapy largely rely on peripheral T cell recruitment in tumors. Yet, a systematic and molecular understanding of how LECs within the LNs control T cell dynamics under steady-state and tumor-bearing conditions is lacking.

View Article and Find Full Text PDF

Introduction: Chronic activation of self-reactive T cells with beta cell antigens results in the upregulation of immune checkpoint molecules that keep self-reactive T cells under control and delay beta cell destruction in autoimmune diabetes. Inhibiting PD1/PD-L1 signaling results in autoimmune diabetes in mice and humans with pre-existing autoimmunity against beta cells. However, it is not known if other immune checkpoint molecules, such as TIGIT, can also negatively regulate self-reactive T cells.

View Article and Find Full Text PDF

We previously reported that the DNA alkylator and transcriptional-blocking chemotherapeutic agent trabectedin enhances oncolytic herpes simplex viroimmunotherapy in human sarcoma xenograft models, though the mechanism remained to be elucidated. Here we report trabectedin disrupts the intrinsic cellular anti-viral response which increases viral transcript spread throughout the human tumor cells. We also extended our synergy findings to syngeneic murine sarcoma models, which are poorly susceptible to virus infection.

View Article and Find Full Text PDF

Adipose tissue homeostasis relies on the interplay between several regulatory lineages, such as type 2 innate lymphoid cells (ILC2s), T helper 2 (Th2) cells, regulatory T cells, eosinophils, and type 2 macrophages. Among them, ILC2s are numerically the dominant source of type 2 cytokines and are considered as major regulators of adiposity. Despite the overlap in immune effector molecules and sensitivity to alarmins (thymic stromal lymphopoietin and interleukin-33) between ILC2s and resident memory Th2 lymphocytes, the role of the adaptive axis of type 2 immunity remains unclear.

View Article and Find Full Text PDF

Collagen expression and structure in the tumour microenvironment are associated with tumour development and therapy response. Leukocyte-associated immunoglobulin-like receptor-1 (LAIR-1) is a widely expressed inhibitory collagen receptor. LAIR-2 is a soluble homologue of LAIR-1 that competes for collagen binding.

View Article and Find Full Text PDF
Article Synopsis
  • * Research suggests that dendritic cell (DC) vaccines can trigger a beneficial type I interferon response, but preclinical trials show these vaccines don't work well in T cell-depleted environments.
  • * Combining DC vaccines with PD-L1 blockade can effectively reduce tumor growth by targeting immunosuppressive macrophages, suggesting a need for comprehensive strategies in treating T cell-depleted tumors.
View Article and Find Full Text PDF

The unfolded protein response (UPR) aims to restore ER homeostasis under conditions of high protein folding load, a function primarily serving secretory cells. Additional, non-canonical UPR functions have recently been unraveled in immune cells. We addressed the function of the inositol-requiring enzyme 1 (IRE1) signaling branch of the UPR in NK cells in homeostasis and microbial challenge.

View Article and Find Full Text PDF