The advent of SARS-CoV-2 variants with defined mutations that augment pathogenicity and/or increase immune evasiveness continues to stimulate global efforts to improve vaccine formulation and efficacy. The extraordinary advantages of lipid nanoparticles (LNPs), including versatile design, scalability, and reproducibility, make them ideal candidates for developing next-generation mRNA vaccines against circulating SARS-CoV-2 variants. Here, we assess the efficacy of LNP-encapsulated mRNA booster vaccines encoding the spike protein of SARS-CoV-2 for variants of concern (Delta, Omicron) and using a predecessor (YN2016C isolated from bats) strain spike protein to elicit durable cross-protective neutralizing antibody responses.
View Article and Find Full Text PDFBiomacromolecules
December 2023
, the world's most common chronic infection-causing pathogen, is responsible for causing gastric ulcers, the fourth-leading cause of cancer-related death globally in 2020. In recent years, the effectiveness of the current treatment regimen (two antibiotics and one proton pump inhibitor) has often been plagued with problems such as resistance and the undesired elimination of commensal bacteria. Herein, we report the synthesis of block and random copolycarbonates, functionalized with cationic guanidinium and anionic acetate functional groups, aimed at selectively killing in the acidic environment of the stomach, while remaining nontoxic to the commensal bacteria in the gut.
View Article and Find Full Text PDF