Background: Research suggests that treatment of multiple brain metastases (BMs) with stereotactic radiosurgery shows improvement when metastases are detected early, providing a case for BM detection capabilities on small lesions.
Purpose: To demonstrate automatic detection of BM on three MRI datasets using a deep learning-based approach. To improve the performance of the network is iteratively co-trained with datasets from different domains.
Coronavirus disease (COVID-19) is a global health crisis caused by the severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Real-time reverse transcriptase-polymerase chain reaction (RT-PCR) is the gold standard test for diagnosing COVID-19. Although it is highly accurate, this lab test requires highly-trained personnel and the turn-around time is long.
View Article and Find Full Text PDFConvolutional neural networks (CNNs) have been used quite successfully for semantic segmentation of brain tumors. However, current CNNs and attention mechanisms are stochastic in nature and neglect the morphological indicators used by radiologists to manually annotate regions of interest. In this paper, we introduce a channel and spatial wise asymmetric attention (CASPIAN) by leveraging the inherent structure of tumors to detect regions of saliency.
View Article and Find Full Text PDFAlthough the application of sub-sensory mechanical noise to the soles of the feet has been shown to enhance balance, there has been no study on how the bandwidth of the noise affects balance. Here, we report a single-blind randomized controlled study on the effects of a narrow and wide bandwidth mechanical noise on healthy young subjects' sway during quiet standing on firm and compliant surfaces. For the firm surface, there was no improvement in balance for both bandwidths-this may be because the young subjects could already balance near-optimally or optimally on the surface by themselves.
View Article and Find Full Text PDFIEEE Trans Ultrason Ferroelectr Freq Control
April 2021
It has been recently demonstrated that one-port surface acoustic wave (SAW) resonators known for their high Q value and relatively small device footprint could be utilized for in-liquid mass loading sensing applications where only the reflectors of the device are coated with the sensing film, while the interdigital transducer (IDT) is isolated from the sensing environment. The sensor relies on changes induced in reflectivity and phase velocity of SAW in the region of the reflectors upon detection of the measurand and is particularly advantageous for SAW resonator-type sensors as any contact of the sensing film with the IDT could change its static capacitance during sensing and thereby introduce serious instability in the sensor response. Accordingly, in the present work, the existing scattering matrix approach to the design of one-port SAW resonator filters, which does not cater to the integration of sensing film on the resonator surface, is adapted to develop a method to design one-port SAW resonator sensors utilizing reflectors as sensing element.
View Article and Find Full Text PDFThe biophotovoltaic cell (BPV) is deemed to be a potent green energy device as it demonstrates the generation of renewable energy from microalgae; however, inadequate electron generation from microalgae is a significant impediment for functional employment of these cells. The photosynthetic process is not only affected by the temperature, CO concentration and light intensity but also the spectrum of light. Thus, a detailed understanding of the influences of light spectrum is essential.
View Article and Find Full Text PDFThis study investigates the effects of aircraft cabin pressure on intracranial pressure (ICP) elevation of a pneumocephalus patient. We propose an experimental setup that simulates the intracranial hydrodynamics of a pneumocephalus patient during flight. It consists of an acrylic box (skull), air-filled balloon [intracranial air (ICA)], water-filled balloon (cerebrospinal fluid and blood) and agarose gel (brain).
View Article and Find Full Text PDFComplex dynamical systems can shift abruptly from a stable state to an alternative stable state at a tipping point. Before the critical transition, the system either slows down in its recovery rate or flickers between the basins of attraction of the alternative stable states. Whether the heart critically slows down or flickers before it transitions into and out of paroxysmal atrial fibrillation (PAF) is still an open question.
View Article and Find Full Text PDFGiancardo et al. recently introduced the neuroQWERTY index (nQi), which is a novel motor index derived from computer-key-hold-time data using an ensemble regression algorithm, to detect early-stage Parkinson's disease. Here, we derive a much simpler motor index from their hold-time data, which is the standard deviation (SD) of the hold-time fluctuations, where fluctuation is defined as the difference between successive natural-log of hold time.
View Article and Find Full Text PDFInt J Comput Assist Radiol Surg
October 2019
Purpose: Lung nodules have very diverse shapes and sizes, which makes classifying them as benign/malignant a challenging problem. In this paper, we propose a novel method to predict the malignancy of nodules that have the capability to analyze the shape and size of a nodule using a global feature extractor, as well as the density and structure of the nodule using a local feature extractor.
Methods: We propose to use Residual Blocks with a 3 × 3 kernel size for local feature extraction and Non-Local Blocks to extract the global features.
Although heavy-tailed fluctuations are ubiquitous in complex systems, a good understanding of the mechanisms that generate them is still lacking. Optical complex systems are ideal candidates for investigating heavy-tailed fluctuations, as they allow recording large datasets under controllable experimental conditions. A dynamical regime that has attracted a lot of attention over the years is the so-called low-frequency fluctuations (LFFs) of semiconductor lasers with optical feedback.
View Article and Find Full Text PDFA frequent observation in plant-animal mutualistic networks is that abundant species tend to be more generalised, interacting with a broader range of interaction partners than rare species. Uncovering the causal relationship between abundance and generalisation has been hindered by a chicken-and-egg dilemma: is generalisation a by-product of being abundant, or does high abundance result from generalisation? Here, we analyse a database of plant-pollinator and plant-seed disperser networks, and provide strong evidence that the causal link between abundance and generalisation is uni-directional. Specifically, species appear to be generalists because they are more abundant, but the converse, that is that species become more abundant because they are generalists, is not supported by our analysis.
View Article and Find Full Text PDFThe statistical predictions of Newtonian and special-relativistic mechanics, which are calculated from an initially Gaussian ensemble of trajectories, are compared for a low-speed scattering system. The comparisons are focused on the mean dwell time, transmission and reflection coefficients, and the position and momentum means and standard deviations. We find that the statistical predictions of the two theories do not always agree as conventionally expected.
View Article and Find Full Text PDFThe newtonian and special-relativistic statistical predictions for the mean, standard deviation and probability density function of the position and momentum are compared for the periodically-delta-kicked particle at low speed. Contrary to expectation, we find that the statistical predictions, which are calculated from the same parameters and initial gaussian ensemble of trajectories, do not always agree if the initial ensemble is sufficiently well-localized in phase space. Moreover, the breakdown of agreement is very fast if the trajectories in the ensemble are chaotic, but very slow if the trajectories in the ensemble are non-chaotic.
View Article and Find Full Text PDFWe show, contrary to expectation, that the trajectory predicted by general-relativistic mechanics for a low-speed weak-gravity system is not always well-approximated by the trajectories predicted by special-relativistic and newtonian mechanics for the same parameters and initial conditions. If the system is dissipative, the breakdown of agreement occurs for chaotic trajectories only. If the system is non-dissipative, the breakdown of agreement occurs for chaotic trajectories and non-chaotic trajectories.
View Article and Find Full Text PDFPhys Rev E Stat Nonlin Soft Matter Phys
March 2011
Newtonian and special-relativistic predictions, based on the same model parameters and initial conditions for the trajectory of a low-speed scattering system are compared. When the scattering is chaotic, the two predictions for the trajectory can rapidly diverge completely, not only quantitatively but also qualitatively, due to an exponentially growing separation taking place in the scattering region. In contrast, when the scattering is nonchaotic, the breakdown of agreement between predictions takes a very long time, since the difference between the predictions grows only linearly.
View Article and Find Full Text PDFThe dynamics of a periodically delta-kicked Hamiltonian system moving at low speed (i.e., at speed much less than the speed of light) is studied numerically.
View Article and Find Full Text PDFWe use model five-level systems to study resonance leaking of pi-pulse-induced multiphoton (MP) transitions along a strongly coupled anharmonic ladder. We demonstrate that the presence of a weakly bound background state attached to the ladder either in linear or Lambda configuration can have very pronounced effects on resonant MP ladder transitions, including essentially complete quenching of the primary transition. We also develop control strategies for the elimination of background state population based on phase-adjusted Gaussian pulse pairs and discuss the underlying control mechanisms.
View Article and Find Full Text PDF